When Tariffs Disrupt Global Supply Chains

Gene M. Grossman Elhanan Helpman Princeton University Harvard University

Geneva Trade and Development Workshop

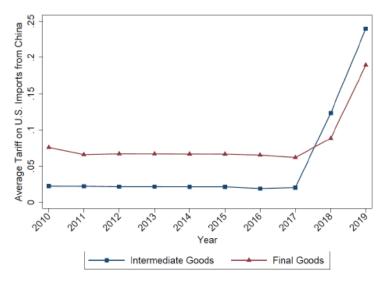
April 12, 2021

Motivation

- ullet Intermediate inputs comprise as much as $2/3^{rds}$ of world trade
 - Some inputs purchased on anonymous world markets
 - Many transactions take place within global supply chains
- Distinctive features of global supply chains (WDR 2020)
 - Made possible by fragmentation of production processes
 - Impose non-trivial search costs
 - Require matching of compatible partners
 - Often involve relationship-specific investments
 - Often governed by incomplete contracts with frequent renegotiation
 - Typically observe many durable relationships ("stickiness")

Motivation

- ullet Intermediate inputs comprise as much as $2/3^{rds}$ of world trade
 - Some inputs purchased on anonymous world markets
 - Many transactions take place within global supply chains
- Distinctive features of global supply chains (WDR 2020)
 - Made possible by fragmentation of production processes
 - Impose non-trivial search costs
 - Require matching of compatible partners
 - Often involve relationship-specific investments
 - Often governed by incomplete contracts with frequent renegotiation
 - Typically observe many durable relationships ("stickiness")
- Burgeoning literature on supply chains addresses:
 - Participation; Geography of international sourcing; Implications for productivity and market structure; Persistence and significance of sparse firm-to-firm networks
 - Little on how trade policy might impact/reorganize global supply chains


Trade Policy vis-à-vis Intermediate Goods

- Pre 2018, trade barriers notably escalated
 - MFN tariffs in G20 countries 70-75% higher on final goods than on intermediates (Bown and Crowley, 2018)
 - We calculate: US average applied tariffs 2010-2017 on consumption goods more than 4x as high as on intermediates
 - Wtd-average applied tariff on intermediate goods only 0.9% in 2017

Trade Policy vis-à-vis Intermediate Goods

- Pre 2018, trade barriers notably escalated
 - MFN tariffs in G20 countries 70-75% higher on final goods than on intermediates (Bown and Crowley, 2018)
 - We calculate: US average applied tariffs 2010-2017 on consumption goods more than 4x as high as on intermediates
 - Wtd-average applied tariff on intermediate goods only 0.9% in 2017
- History changes course: The Trump tariffs
 - By September 2018, 82% of intermediates from China covered, but only 29% of consumer goods (Bown)
 - Under Phase One deal, 93% of intermediates covered by special tariffs (Bown)
 - We calculate average applied tariffs on imports of consumer goods and intermediate goods from China:

Average Tariffs Applied by US to Imports from China

Supply Chain Disruption?

- Anecdotes from business press
 - Shift from China to Vietnam, Thailand, Indonesia, Malaysia
 - Variety of industries: electronics, furniture, hand luggage, auto parts
 - Variety of large firms: Samsonite, Cisco Systems, Macy's, Ingersoll-Rand

Supply Chain Disruption?

- Anecdotes from business press
 - Shift from China to Vietnam, Thailand, Indonesia, Malaysia
 - Variety of industries: electronics, furniture, hand luggage, auto parts
 - Variety of large firms: Samsonite, Cisco Systems, Macy's, Ingersoll-Rand
- Diff-in-Diff Evidence of Supply Chain Disruption (à la Amiti et al.)
 - Monthly customs data for imports of intermediate goods at HTS10-country-of-origin level, January 2016 - October 2019, with product fixed effects

	Imports from China (1)	Imports from 13 LCCs (2)
Log Difference in Tariffs	-1.609** (0.212)	0.441* (0.224)
R. Squared Obs	0.85 110132	0.84 110132

Goals of Paper

- Develop model of relational supply chains with many of the defining features described by *World Development Report* (2020).
- Study sourcing patterns, price and welfare effects of discriminatory unanticipated tariff shocks
 - Small tariffs: do not alter ideal location for search
 - Large tariffs: ideal location shifts to another country that is free from tariffs, or to home country (reshoring)
- Complement Ornelas and Turner (2008, 2012), Ornelas, Turner and Bickwit (2021) and Antràs and Staiger (2012) on hold up problems with customized inputs; our paper focuses instead on costly search and renegotiation

Foreign Sourcing with Search and Bargaining Model Outline

Two sectors

- Homogeneous good, produced competitively with CRS
- Differentiated products, monopolistic competition, relational supply chains
- Technology for differentiated products
 - Combines labor and composite intermediate good, Cobb Douglas
 - Composite requires continuum of inputs in fixed proportions
 - Inputs imported from cheapest source, or produced at home
- Search and Bargaining
 - A final producer pays to search for supplier of each input
 - Each supplier has match-specific productivity
 - Buyer can negotiate a short-term contract or resume search
- Long-run Equilibrium: Zero profits in anticipation of free trade

Preferences and Demand

Quasi-linear, constant elasticity, CES:

$$\Omega\left(X,Y\right) = Y + U\left(X\right)$$

$$U\left(X\right) = \begin{cases} \frac{\varepsilon}{\varepsilon - 1} \left(X^{\frac{\varepsilon - 1}{\varepsilon}} - 1\right) & \text{for } \varepsilon \neq 1\\ \log X & \text{for } \varepsilon = 1 \end{cases}.$$

$$X = \left[\int_{0}^{n} x\left(\omega\right)^{\frac{\sigma - 1}{\sigma}} d\omega\right]^{\frac{\sigma}{\sigma - 1}}, \, \sigma > 1,$$

$$\sigma > \varepsilon$$

which implies that demand for each brand is increasing in price index, P

Production

• Linear production of homogeneous good (or numeraire):

$$Y = \ell_Y$$

Cobb-Douglas production of differentiated varieties:

$$x = z(\ell, m)$$

or

$$c(\phi) = \phi^{\alpha}$$

where ϕ is marginal cost of m

Search

- Symmetry across firms and inputs: All producers initially search in minimum wage country A
- At cost F, take draw from $G(\cdot)$ for input ω
 - ullet Learn inverse match productivity ${oldsymbol a}$: can produce ω at unit cost ${oldsymbol wa}$
 - ullet Negotiate short-term contract or pay F again and take another draw
- For simplicity: Assume no time between draws
- Optimal strategy: Reservation stopping rule ā for each input

Search cost:
$$S\left(\bar{a}\right) = F + \left[1 - G\left(\bar{a}\right)\right]S\left(\bar{a}\right) \Rightarrow$$

$$S\left(\bar{a}\right) = \frac{F}{G\left(\bar{a}\right)}$$

Bargaining

- ullet Nash bargaining over per-unit price, with weights eta and 1-eta
- "Nash-in-Nash": bargain separately with suppliers, take *m* as given
- Outside options:
 - For buyer: Resume search, find alternative supplier with expected price $\mu_{\rho}\left(\bar{a}\right)$ at expected flow cost $f/G\left(\bar{a}\right)$
 - For supplier: Zero

Bargaining

- ullet Nash bargaining over per-unit price, with weights eta and 1-eta
- "Nash-in-Nash": bargain separately with suppliers, take m as given
- Outside options:
 - For buyer: Resume search, find alternative supplier with expected price $\mu_{\rho}\left(\bar{a}\right)$ at expected flow cost $f/G\left(\bar{a}\right)$
 - For supplier: Zero
- Total cost of m units of intermediates (including search cost):

$$C(m) = w\mu_{a}(\bar{a})m + \frac{f}{\beta G(\bar{a})}$$

Perceived marginal cost:

$$\phi = w\mu_a(\bar{a}) \Rightarrow MC < AC$$

Free-Trade Equilibrium

Optimal search trade-off:

$$ar{\mathbf{a}} = \arg\min_{\mathbf{a}} \frac{\mathbf{mw}}{\mathbf{mw}} \mu_{\mathbf{a}} \left(\mathbf{a} \right) + \frac{\mathbf{f}}{\beta G \left(\mathbf{a} \right)}$$

- ā is decreasing in mw:
 - greater stake in search outcome ⇒ more intensive search

Free-Trade Equilibrium

Optimal search trade-off:

$$ar{\mathbf{a}} = \arg\min_{\mathbf{a}} \frac{\mathbf{mw}}{\mathbf{mw}} \mu_{\mathbf{a}} \left(\mathbf{a} \right) + \frac{\mathbf{f}}{\beta G \left(\mathbf{a} \right)}$$

- ā is decreasing in mw:
 - greater stake in search outcome ⇒ more intensive search
- Input price after substitution of optimal search in Nash bargain:

$$ho\left(\mathbf{a}
ight)=eta$$
wa $+\left(1-eta
ight)$ w $ar{\mathbf{a}}$

Free-Trade Equilibrium

Optimal search trade-off:

$$\bar{\mathbf{a}} = \arg\min_{\mathbf{a}} \frac{\mathbf{mw}}{\mathbf{mw}} \mu_{\mathbf{a}} \left(\mathbf{a} \right) + \frac{\mathbf{f}}{\beta G \left(\mathbf{a} \right)}$$

- ā is decreasing in mw:
 - greater stake in search outcome ⇒ more intensive search
- Input price after substitution of optimal search in Nash bargain:

$$ho\left(a
ight) =eta$$
wa $+\left(1-eta
ight)$ wā

- Start tariff analysis from zero-profit equilibrium
 - Ad valorem tariff t on imports from country $A, \tau \equiv 1 + t$
 - Unanticipated: n pre-determined in expectation of au=1

Sourcing Patterns

Elastic demand: $\varepsilon > 1$

Original producers retain all suppliers from country A, new suppliers from country A with suppliers in country A with suppliers from country B, new entrants find suppliers in country B.

Inelastic demand: $\varepsilon < 1$

• Small tariff: $\tau < w_B/w_A$

Renegotiation in Enduring Relationships (Small Tariff)

- Start with "small tariff": $\tau < w_B/w_A$
 - Actual and threatened searches remain in A
- Renegotiated price:

$$ho\left(\mathbf{a}, au
ight)=eta$$
wa $+\left(1-eta
ight)$ wā $\left(au
ight)$

- $\rho \downarrow$ if credible threat of more intensive search
- $m{\cdot}$ $ho\uparrow$ if threatend search is less discerning
- Optimal choice of \bar{a} : decreasing in $\tau m(\tau)$
 - Input prices rise iff $ar{a}\left(au
 ight)>ar{a}$
 - Input prices rise iff $\tau m(\tau) < m$ (smaller stake)
 - $\tau m(\tau) < m \text{ iff } \varepsilon > 1$
- These are TOT effects of tariff due to shared surplus

Replacing Unproductive Suppliers (Small Tariff)

- Producers might choose to terminate some relationships and recommence search for these inputs
- When, if ever, do firms replace some of their initial suppliers?
 - If $\varepsilon > 1$, $\bar{a}\left(\tau\right) > \bar{a} \Rightarrow$ no replacement of any suppliers by original producers
 - If $\varepsilon < 1$, $\bar{a}(\tau) < \bar{a}$ at original n
 - But profitability rises, because direct effect of input tariff offset by favorable effect on competition through $P \uparrow$
 - Tariff induces entry: n ↑
 - \bullet Entry reduces stake in search by original producers; entry continues until $au m^{ au} = m \, (1)$
 - In equilibrium, $\bar{a}\left(\tau\right)=\bar{a}\left(1\right)\Rightarrow$ no replacement of any suppliers by original producers

Welfare Effects of Small Tariffs: Elastic Demand

- No new searches, no entry, so no new capital costs
- Tariff payments by firm accrue as tariff revenue
- So

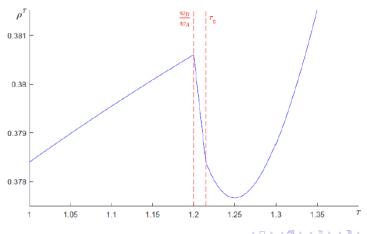
$$V\left(\tau\right) = U\left(X^{\tau}\right) - n\rho^{\tau}m^{\tau} - n\ell^{\tau}$$

Differentiating:

$$\frac{1}{n}\frac{dV^{\tau}}{d\tau} = \left(\frac{\sigma}{\sigma - 1} - 1\right)\frac{d\ell^{\tau}}{d\tau} + \left(\frac{\sigma}{\sigma - 1}\phi^{\tau} - \rho^{\tau}\right)\frac{dm^{\tau}}{d\tau} - m^{\tau}\frac{d\rho^{\tau}}{d\tau}$$

- Labor demand declines, m declines, terms of trade deteriorate
- Possibility of welfare enhancing tariff due to middle term ($\phi^{\tau} < \rho^{\tau}$), but plausible parameter values suggest not.

Larger Tariffs


- Suppose $w_B < \tau w_A$
 - Country B could be foreign country exempt from tariff (e.g., Vietnam)
 - Country B could be the home country
- New searches (if any) and threatened searches take place in B
- Renegotiation with original suppliers: Suppliers share burden of tariff!
 - Consistent with Amiti et al. (2020)
 - Partial Effect: TOT improve!
- Reorganization of supply chains:
 - With $\varepsilon > 1$
 - $\tau < \tau_c \Rightarrow$ no replacement (room to bargain)
 - ullet $au > au_c \Rightarrow$ replace range of least productive suppliers
 - With $\varepsilon < 1$, replace range of least productive suppliers
 - Replacement ⇒ Vinerian trade diversion, harms TOT

Effect of Tariffs on TOT

Elastic Demand

$$\sigma = 5$$
, $\theta = 4$, $\varepsilon = 1.5$, $\alpha = \beta = 0.5$
 $w_A = 0.5$, $w_B = 0.6$

Welfare Effects of Tariffs

Elastic Demand, B is Foreign Country

$$\sigma = 5$$
, $\theta = 4$, $\varepsilon = 1.5$, $\alpha = \beta = 0.5$
 $w_A = 0.5$, $w_B = 0.6$

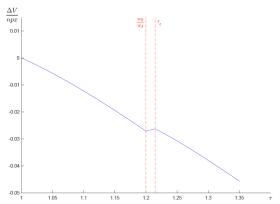
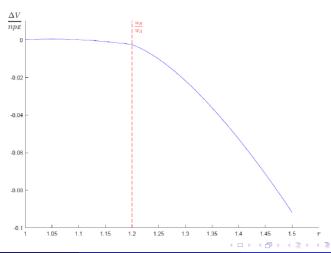
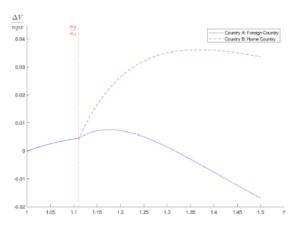



Figure: Welfare Effects of Unanticipated Tariffs: Elastic Demand

Welfare Effects of Tariffs

Inelastic Demand, B is Foreign Country


$$\sigma = 5$$
, $\theta = 4$, $\varepsilon = 0.5$, $\alpha = \beta = 0.5$
 $w_A = 0.5$, $w_B = 0.6$

Welfare Effects of Tariffs

Inelastic Demand, Weak Bargaining Position

$$\sigma = 5$$
, $\theta = 4$, $\varepsilon = 0.3$, $\alpha = \beta = 0.3$
 $w_A = 0.9$, $w_B = 1$

Conclusions

- New mechanisms for tariffs to affect prices and welfare:
 - Price negotiations conducted in shadow of renewed search. Input prices rise (fall) if incentive for search reduced (intensified)
 - Bargaining drives a wedge between marginal cost of inputs as perceived by final-good producers and their true social cost — due to independent bargaining with myriad suppliers
 - Large tariffs can generate Vinerian trade diversion; part of the cost "hidden" in extra search costs

Conclusions

• New mechanisms for tariffs to affect prices and welfare:

- Price negotiations conducted in shadow of renewed search. Input prices rise (fall) if incentive for search reduced (intensified)
- Bargaining drives a wedge between marginal cost of inputs as perceived by final-good producers and their true social cost — due to independent bargaining with myriad suppliers
- Large tariffs can generate Vinerian trade diversion; part of the cost "hidden" in extra search costs

• Elements missing from analysis:

- Heterogeneous suppliers with comparative advantage in different inputs
 which could explain multi-country sourcing
- Time for search: slow adjustment (major complication)
- Investment in customization of inputs that generates hold-up problems, as in Ornelas and Turner (2008) and Antràs and Staiger (2012)