Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000

Trade Protection Along Supply Chains

C. P. Bown¹ P. Conconi² A. Erbahar³ L. Trimarchi⁴

 $^{1}\mbox{Peterson}$ Institute for International Economics and CEPR

²Université libre de Bruxelles (ECARES), CEPR, CESifo, CEP

³Erasmus University Rotterdam and Tinbergen Institute

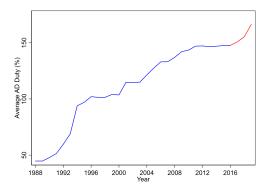
⁴Université de Namur

Geneva Trade and Development Workshop, 10 May 2021

Introduction ●0000	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Motiva	tion				

- Rise of China as a world trading power and effects on US employment (e.g. Autor *et al.*, 2013; Acemoglu *et al.*, 2016; Pierce and Schott, 2016)
- US-China trade war and "return to protectionism" (e.g. Amiti *et al.*, 2019; Flaaen and Pierce, 2019; Flaaen *et al.*, 2020; Fajgelbaum *et al.*, 2020)
- Well before Trump's presidency, China had been the target of increasing US protection: between 1988 and 2016, average US antidumping (AD) duties against China more than tripled (from 45% to 148%)

Introduction •0000	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Motiva	tion				


- Rise of China as a world trading power and effects on US employment (e.g. Autor *et al.*, 2013; Acemoglu *et al.*, 2016; Pierce and Schott, 2016)
- US-China trade war and "return to protectionism" (e.g. Amiti *et al.*, 2019; Flaaen and Pierce, 2019; Flaaen *et al.*, 2020; Fajgelbaum *et al.*, 2020)
- Well before Trump's presidency, China had been the target of increasing US protection: between 1988 and 2016, average US antidumping (AD) duties against China more than tripled (from 45% to 148%)

Introduction ●0000	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Motiva	tion				

- Rise of China as a world trading power and effects on US employment (e.g. Autor *et al.*, 2013; Acemoglu *et al.*, 2016; Pierce and Schott, 2016)
- US-China trade war and "return to protectionism" (e.g. Amiti *et al.*, 2019; Flaaen and Pierce, 2019; Flaaen *et al.*, 2020; Fajgelbaum *et al.*, 2020)
- Well before Trump's presidency, China had been the target of increasing US protection: between 1988 and 2016, average US antidumping (AD) duties against China more than tripled (from 45% to 148%)

Introduction ○●○○○	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Motivat	tion				

Average AD duty against China

Source: Authors' calculations based on an extended version of the Temporary Trade Barriers Database.

Import coverage

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
00000					

- Emergence of global supply chains and rise of trade in intermediate goods
- Increasing protection against intermediate goods (e.g. Bown, 2019)
- Input protection hurts downstream producers:

- This paper: we collect detailed information on protectionist measures applied by the US since 1988 and combine it with disaggregated US inputoutput tables to study the effects of trade protection along supply chains
- Key challenge for identification: endogeneity of trade policy (Trefler, 1993)

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
00000					

- Emergence of global supply chains and rise of trade in intermediate goods
- Increasing protection against intermediate goods (e.g. Bown, 2019)
- Input protection hurts downstream producers:

- This paper: we collect detailed information on protectionist measures applied by the US since 1988 and combine it with disaggregated US inputoutput tables to study the effects of trade protection along supply chains
- Key challenge for identification: endogeneity of trade policy (Trefler, 1993)

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
00000	000000	000000000000	00000000000	000	000000000000000000000000000000000000000

- Emergence of global supply chains and rise of trade in intermediate goods
- Increasing protection against intermediate goods (e.g. Bown, 2019)
- Input protection hurts downstream producers:

• This paper: we collect detailed information on protectionist measures applied by the US since 1988 and combine it with disaggregated US inputoutput tables to study the effects of trade protection along supply chains

• Key challenge for identification: endogeneity of trade policy (Trefler, 1993)

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
00000	000000	000000000000	00000000000	000	000000000000000000000000000000000000000

- Emergence of global supply chains and rise of trade in intermediate goods
- Increasing protection against intermediate goods (e.g. Bown, 2019)
- Input protection hurts downstream producers:

• This paper: we collect detailed information on protectionist measures applied by the US since 1988 and combine it with disaggregated US inputoutput tables to study the effects of trade protection along supply chains

• Key challenge for identification: endogeneity of trade policy (Trefler, 1993)

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
00000	000000	000000000000	00000000000	000	000000000000000000000000000000000000000

- Emergence of global supply chains and rise of trade in intermediate goods
- Increasing protection against intermediate goods (e.g. Bown, 2019)
- Input protection hurts downstream producers:

- This paper: we collect detailed information on protectionist measures applied by the US since 1988 and combine it with disaggregated US inputoutput tables to study the effects of trade protection along supply chains
- Key challenge for identification: endogeneity of trade policy (Trefler, 1993)

Introduction Data

Identification Strategy

Empirical Results

Conclusion

Main contributions of our paper

- New instrument for AD, combining exogenous variation in the political importance of industries with their historical experience in AD proceedings
- Using this instrument, we identify the causal impact of trade protection:
 - decrease downstream employment, wages, sales, and investment
 - decrease imports and raise production costs

Main contributions of our paper

 New instrument for AD, combining exogenous variation in the political importance of industries with their historical experience in AD proceedings

- Using this instrument, we identify the causal impact of trade protection:
 - decrease downstream employment, wages, sales, and investment
 - decrease imports and raise production costs

Introduction 0000●	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Related	litera	ture			

- Effects of the **China shock** on US employment (e.g. Autor *et al.*, 2013; Acemoglu *et al.*, 2016; Pierce and Schott, 2016; Wang *et al.*, 2018) and other outcomes (e.g. Autor *et al.*, 2019; 2020a,b; Pierce and Schott, 2020).
- US-China trade war (e.g. Amiti *et al.*, 2019; Cavallo *et al.*, 2019; Flaaen and Pierce, 2019; Fajgelbaum *et al.*, 2020; Flaaen *et al.*, 2020)
- Trade policy and vertical linkages (e.g. Amiti and Konings, 2007; Goldberg *et al.*, 2010; Alfaro *et al.*, 2016; Blanchard *et al.*, 2017; Erbahar and Zi, 2017; Conconi *et al.*, 2018; Barattieri and Cacciatore, 2019; Bown *et al.*, 2020; Grossman and Helpman, 2020)
- Antidumping protection (e.g. Finger et al., 1982; Prusa, 2001; Blonigen and Park, 2004; Irwin, 2005; Bown and Crowley, 2007, 2013, 2016; Konings et al., 2001; Konings and Vandenbussche, 2008; Pierce, 2011; Blonigen and Prusa, 2016; Besedes and Prusa, 2017)

Introduction	Data ●00000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Outline					

2 Data

Identification Strategy

4 Empirical Results

5 Conclusion

6 Appendix

Introduction	Data o●oooo	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Data o	n tariff	S			

- Temporary Trade Barriers Database (TTBD) of the World Bank
- We focus on AD duties applied by the United States against China
- We map each AD case to a corresponding 4-digit SIC sector
- Robustness: all TTBs, MFN tariffs, Trump's tariffs, all targeted countries

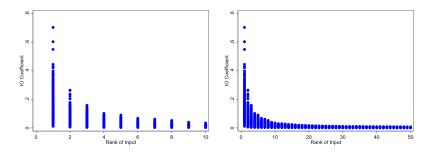
Introduction

Data

000000

Identification Strategy

Empirical Results


Conclusion

Data on input-output linkages

- Input-output (IO) tables from the Bureau of Economic Analysis (BEA) to identify **vertical linkages** between 479 industries
- Following Acemoglu *et al.* (2016), we employ the 1992 BEA tables, fixing technological linkages at the start of our sample period •
- Some inputs play a key role in many industries (e.g. steel, paper, organic chemicals, plastic materials)

Introduction	Data 000●00	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000

Average IO coefficients of most important inputs

Introduction

Data

000000

Identification Strategy

Empirical Results

Conclusion

Measuring protection along supply chains

Main measure of input protection:

Average Input Tariff_{j,t} =
$$\sum_{i=1}^{N} \omega_{i,j}$$
 Tariff_{i,t}

 $\omega_{i,j}$: cost share of input *i* in production of good *j* (excluding diagonal $\omega_{j,j}$)

 $Tariff_{i,t}$: AD duty on input *i* in year *t*

Descriptive statistics

Introduction	Data 00000●	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Other o	lata sc	ources			

• County Business Patterns for employment data

• UN Comtrade for data on trade flows

• Bureau of Labor Statistics for data on producer prices

• NBER-CES for other industry information (e.g. sales, investment)

Introduction	Data 000000	Identification Strategy •000000000000	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Outline					

2 Data

Identification Strategy

4 Empirical Results

5 Conclusion

6 Appendix

Introduction	Data 000000	Identification Strategy ○●○○○○○○○○○○○	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Identifie	cation	strategy			

- Broad concern: endogeneity of trade policy (Trefler, 1993)
- **Productivity shocks** correlated with the performance of downstream industries and the level of input protection
- **OLS coefficients** are likely to be biased upwards (i.e. underestimate the negative effects of protection)
- Similar concerns for **lobbying by downstream firms against input protection** (e.g. Gawande *et al.*, 2012; Mayda *et al.*, 2018)

Introduction	Data 000000	Identification Strategy ○●○○○○○○○○○○○	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Identifi	cation	strategy			

- Broad concern: endogeneity of trade policy (Trefler, 1993)
- **Productivity shocks** correlated with the performance of downstream industries and the level of input protection
- OLS coefficients are likely to be biased upwards (i.e. underestimate the negative effects of protection)
- Similar concerns for **lobbying by downstream firms against input protection** (e.g. Gawande *et al.*, 2012; Mayda *et al.*, 2018)

Introduction	Data 000000	Identification Strategy ○●○○○○○○○○○○○	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Identifi	cation	strategy			

- Broad concern: endogeneity of trade policy (Trefler, 1993)
- **Productivity shocks** correlated with the performance of downstream industries and the level of input protection
- OLS coefficients are likely to be biased upwards (i.e. underestimate the negative effects of protection)
- Similar concerns for **lobbying by downstream firms against input pro**tection (e.g. Gawande *et al.*, 2012; Mayda *et al.*, 2018)

Introduction	Data 000000	Identification Strategy 00●0000000000	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Identifi	cation	strategy			

• We use an IV strategy to identify the causal effects of tariffs

• Our instrument exploits exogenous variation in the political importance of industries that have AD experience

 $IV_{i,T} = Experience_i \times Swing_{i,T}$

 AD protection should favor industries that are important in swing states (captured by Swing_{i,T}), but only if they have long-term knowledge of the complex institutional AD procedures (captured by Experience_i)

Introduction	Data 000000	Identification Strategy 00●0000000000	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Identifi	cation	strategy			

• We use an IV strategy to identify the causal effects of tariffs

• Our instrument exploits exogenous variation in the political importance of industries that have AD experience

 $IV_{i,T} = Experience_i \times Swing_{i,T}$

 AD protection should favor industries that are important in swing states (captured by Swing_{i,T}), but only if they have long-term knowledge of the complex institutional AD procedures (captured by Experience_i)

Introduction 00000	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Experie	ence _i				

- The process to petition for AD is extremely complex (Blonigen and Park, 2004; Blonigen, 2006): the petitioning industry must present substantial information about the case, as well as legal analysis and arguments
- As a result of this complexity, prior experience
 - decreases the cost of initiating future AD cases
 - increases the likelihood of successful outcomes
- Experience: number of AD petitions filed by industry i in 1980-1987
- To ensure exogeneity of the instrument, we exclude petitions targeting China and leading to measures in force during 1988-2016

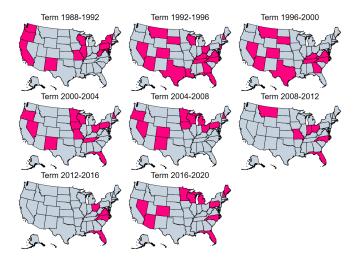
Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Swing _{i,}	T				

• The **U.S. electoral system** creates incentives to favor swing states, where the vote gap between parties is expected to be small

• Swing states shape U.S. trade policy (e.g. Muûls and Petropoulou, 2013; Conconi *et al.*, 2017; Ma and McLaren, 2018; Fajgelbaum *et al.*, 2020)

• $Swing_{s,T} = 1$ if the difference in vote shares of Democratic and Republican candidates in the previous presidential election is less than 5%

Introduction


Data

Identification Strategy

Empirical Results

Conclusion

Swing states during the last eight presidential terms

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Swing _{i,}	Т				

 Our measure of the political importance of an industry is the total number of workers employed in SIC4 industry *i* in states classified as swing in term *T*, over the total number of workers in tradable sectors in swing states:

$$Swing_{i,T} = \frac{\sum_{s} L_{s,i}^{1988} \times Swing_{s,T}}{\sum_{s} \sum_{i} L_{s,i}^{1988} \times Swing_{s,T}}$$

As the identity of swing states changes (Swing_{s,T}), the political importance of industries changes, driven by their heterogenous location across states (captured by initial employment shares L¹⁹⁹⁸_{s,i})

Empirical Results

Conclusion

Swing-state politics and AD

Data

Previous studies show that AD decisions of the International Trade Commission (ITC) responds to domestic political interests (e.g. Finger *et al.*, 1982; Moore, 1992; Hansen and Prusa, 1997; Aquilante, 2018)

• We provide new evidence of the importance of swing-state politics in AD:

- Swing states are overrepresented in the key congressional committees that deal with trade policy (Finance, Ways and Means), which can influence ITC decisions through various channels (e.g. appointment confirmations, budget allocation, oversight hearings)
- ITC commissioners are more likely to **vote in favor** of AD when the **petitioning industry is more important in swing states**

Swing-state politics and AD

- Previous studies show that AD decisions of the International Trade Commission (ITC) responds to domestic political interests (e.g. Finger *et al.*, 1982; Moore, 1992; Hansen and Prusa, 1997; Aquilante, 2018)
- We provide new evidence of the importance of swing-state politics in AD:
 - Swing states are overrepresented in the key congressional committees that deal with trade policy (Finance, Ways and Means), which can influence ITC decisions through various channels (e.g. appointment confirmations, budget allocation, oversight hearings)
 - ITC commissioners are more likely to vote in favor of AD when the petitioning industry is more important in swing states

Introduction	Data 000000	Identification Strategy 00000000●0000	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Predict	ing AD) protection			

• To check whether our IV strategy allows us to predict AD protection, we estimate the following regression by OLS:

$$Tariff_{i,T} = \beta_0 + \beta_1 IV_{i,T} + \delta_i + \delta_T + \varepsilon_{i,T}$$

*Tariff*_{*i*,*T*}: AD duty on imports from China in industry *i* at the end of term *T* $IV_{i,T} = Experience_i \times Swing_{i,T}$ δ_i : industry fixed effects at SIC4 level δ_T : term fixed effects

00000 000000000000000000000000 000 000	Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
			000000000000000			

Predicting AD protection

	(1)	(2)	(3)
$IV_{i,T}$	1.398***		1.362***
	(0.268)		(0.191)
Swing _{i.T}		8.006	1.199
		(5.644)	(4.228)
SIC4 FE	Yes	Yes	Yes
Term FE	Yes	Yes	Yes
Adjusted R^2	0.57	0.54	0.57
Observations	2,835	2,835	2,835

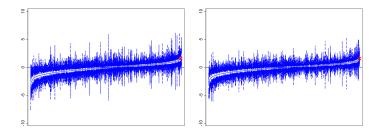
Notes: Observations are weighted by 1988 employment. The dependent variable is winsorized at 5th and 95th percentiles. Standard errors clustered at the SIC3 level in parenthesis. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively.

Combining Swing_{i,T} with Experience_i is key to predicting AD protection

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
		00000000000000			

Robustness checks

	Product	Import	All TTBs	All countries	No steel
	coverage	coverage			
	(1)	(2)	(3)	(4)	(5)
$IV_{i,T}$	0.110***	0.017***	1.333***	0.623***	3.314***
	(0.022)	(0.003)	(0.278)	(0.195)	(1.227)
SIC4 FE	Yes	Yes	Yes	Yes	Yes
Term FE	Yes	Yes	Yes	Yes	Yes
Adjusted R ²	0.69	0.44	0.57	0.62	0.55
Observations	2,835	2,835	2,835	2,835	2,828
	Electoral	10%	Next	Alternative	Alternative
	votes	threshold	elections	Experience,	Swing _{i T}
	(6)	(7)	(8)	(9)	(10)
$IV_{i,T}$	1.137***	2.112**	0.758***	1.240***	5.532***
	(0.203)	(1.038)	(0.220)	(0.246)	(1.072)
SIC4 FE	Yes	Yes	Yes	Yes	Yes
Term FE	Yes	Yes	Yes	Yes	Yes
Adjusted R ²	0.57	0.54	0.55	0.57	0.57
Observations	2,835	2,835	2,835	2,835	2,835


Introduction	Data 000000	Identification Strategy 000000000000000000000000000000000000	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Placebo	o tests				

- To verify the logic behind our IV strategy, we carry out two placebo tests:
 - Randomly choose the identity of swing states across the 50 US states
 - Randomly choose the **timing** of swing states across the 32 US states that were classified as swing at least once during our sample period
 - For each placebo test, we perform 5,000 randomizations of $Swing_{s,T}$
 - Using randomized $Swing_{s,T}$, we generate Placebo $IV_{i,T}$ and estimate

$$Tariff_{i,T} = \beta_0 + \beta_1 Placebo \ IV_{i,T} + \delta_i + \delta_T + \varepsilon_{i,T}$$

Introduction	Data 000000	Identification Strategy 0000000000000●	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000

5,000 estimated coefficients of Placebo $IV_{i,T}$

The red cross corresponds to estimated coefficient in our baseline regression; it is significant at 1% level and outside the 99% confidence interval of the placebo estimates Predicting AD protection requires keeping track of the actual swing states in each term

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Outline					

2 Data

Identification Strategy

4 Empirical Results

5 Conclusion

6 Appendix

Introduction

Data

Empirical Results

Conclusion

Impact of upstream protection on downstream employment

Baseline two-stage least squares regression:

$$\Delta L_{j,T} = \beta_0 + \beta_1 \Delta Input Tariff_{j,T} + \delta_j + \delta_T + \varepsilon_{j,T}$$

 $\Delta L_{j,T}$: log change in employment in industry *j* during term *T* $\Delta Input Tariff_{j,T}$: change in input protection during term *T* δ_j : industry fixed effects at SIC4 level, accounting for sectoral trends δ_T : term fixed effects, accounting for macroeconomic and political conditions

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000

The impact of tariffs on employment in downstream industries (1988-2016)

	All sectors		Manufacturing sectors only		
	Average input	Tariff on key	Average input	Tariff on key	
	tariff	input	tariff	input	
	(1)	(2)	(3)	(4)	
$\Delta Input Tariff_{i,T}$	-0.319***	-0.042***	-0.151***	-0.019***	
	(0.087)	(0.008)	(0.053)	(0.007)	
SIC4 FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
Observations	3,351	3,351	2,742	2,742	
KP F-statistic	229.1	1,349.8	163.6	715.5	

Notes: Observations are weighted by 1988 employment. The dependent variable is winsorized at 5th and 95th percentiles. Standard errors clustered at the SIC3 level in parenthesis. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively.

1 p.p. increase in input tariff decreases annual growth rate of employment by 0.32 p.p 1 s.d. (0.02) increase in input tariffs decreases the annual growth rate of employment by 0.7 p.p. (16% of the standard deviation of employment growth)

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000

The impact of tariffs on employment in downstream industries (1988-2016)

	All sectors		Manufacturing sectors only		
	Average input	Tariff on key	Average input	Tariff on key	
	tariff	input	tariff	input	
	(1)	(2)	(3)	(4)	
$\Delta Input Tariff_{i,T}$	-0.319***	-0.042***	-0.151***	-0.019***	
	(0.087)	(0.008)	(0.053)	(0.007)	
SIC4 FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
Observations	3,351	3,351	2,742	2,742	
KP F-statistic	229.1	1,349.8	163.6	715.5	

Notes: Observations are weighted by 1988 employment. The dependent variable is winsorized at 5th and 95th percentiles. Standard errors clustered at the SIC3 level in parenthesis. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively.

1 p.p. increase in input tariff decreases annual growth rate of employment by 0.32 p.p 1 s.d. (0.02) increase in input tariffs decreases the annual growth rate of employment by 0.7 p.p. (16% of the standard deviation of employment growth)

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000

• We compute the **counterfactual jobs lost due to input protection**, we apply the methodology proposed by Acemoglu *et al.* (2016):

$$extsf{Employment losses} = \sum_{j, au} extsf{L}_{j, au} (1 - e^{-\hat{eta}_1 \Delta \widetilde{ au}_{j, au}})$$

- $L_{j,T}$: employment level in industry j at the end of term T $\hat{\beta}_1$: estimated coefficient of $\Delta Input Tariff_{j,T}$ in the second stage $\Delta \widetilde{\tau_{j,T}}$: observed change in input duties weighted by the partial R² of the first stage
 - 1.8 million jobs lost across all downstream sectors over 1988-2016

Introduction

Data

Identification Strategy

Empirical Results

Conclusion

Heterogeneous effects across industries

Large losses in non-manufacturing sectors relying on protected inputs:

Construction: more than 150,000 additional jobs would have been created absent AD protection (average input tariff of 10.20%, average duty on steel of 81.61%)

• The effects of protection also depend on the extent to which downstream producers rely on foreign suppliers for their inputs •

Data

Accounting for the Effects on Protected Industries

• Our baseline results focus on the effects of protection on downstream industries

$\Delta Tariff_{i,T}$	-0.024	
$\Delta Input Tariff_{iT}$		-0.327***
SIC4 FE		
Year FE		
KP F-statistic		

Accounting for the impact of tariffs on protected industries

• Focusing on protected industries confounds tariffs on final goods and inputs

• Net negative impact of protection across protected and downstream sectors

Data

Accounting for the Effects on Protected Industries

• Our baseline results focus on the effects of protection on downstream industries

	Protected industries	All industries
		(including diagonal)
	(1)	(2)
$\Delta Tariff_{j,T}$	-0.024	
	(0.025)	
$\Delta Input Tariff_{i,T}$		-0.327***
		(0.078)
SIC4 FE	Yes	Yes
Year FE	Yes	Yes
Observations	2,833	3,351
KP F-statistic	16.3	375.9

Accounting for the impact of tariffs on protected industries

- Focusing on protected industries confounds tariffs on final goods and inputs
- Net negative impact of protection across protected and downstream sectors

Additional robustness checks

- Measure of protection:
 - Alternative AD measures, all TTBs, duties on other countries
 - Controlling for additional tariffs
- Vertical linkages:
 - Weighting input tariffs by total IO coefficients
 - Effects of protection on upstream sectors
- Controls:
 - Alternative Swing_{i, T}, controlling for Swing_{i, T} and Input Swing_{i, T}
 - Controlling for federal and state-level subsidies
- Econometric methodology:
 - Levels, first-differences, unweighted regressions, alternative clusters
 - "Re-centering" the instrument (Borusyak and Hull, 2021)

Introduction

Data

Empirical Results

Conclusion

Extending the analysis to trade barriers under Trump

• Since Trump took office in 2017, the US has **further increased AD protection** against China (32 new measures, average duty rate of 225%)

 In 2018, Trump introduced special tariffs (under Sections 201 and 301 of 1974 US Trade Act, Section 232 of 1962 Trade Expansion Act)

Bown, Conconi, Erbahar, and Trimarchi Trade Protection Along Supply Chains

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000

The impact of tariffs on employment in downstream industries (1988-2018)

	AD only		All TTBs +T	rump's tariffs
	Average input	Tariff on key	Average input	Tariff on key
	tariff	input	tariff	input
	(1)	(2)	(3)	(4)
ΔInput Tariff _{i.T}	-0.380***	-0.048***	-0.485***	-0.055***
	(0.105)	(0.009)	(0.145)	(0.010)
SIC4 FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Observations	3,829	3,829	3,829	3,829
KP F-statistic	162.7	979.2	100.4	624.1

Around 500,000 US jobs lost across downstream industries due to protectionist measures introduced in the first two years of Trump's presidency

Introduction

Data

Identification Strategy

Empirical Results

Conclusion

Effects of protection on other industry outcomes

Effects of protection on other industry outcomes

	Blue Collar (1)	White Collar (2)	Wages (3)	Sales (4)	Investment (5)
Δ Input Tariff _{j,T}	-0.143** (0.065)	0.001 (0.040)	-0.031** (0.013)	-0.176*** (0.054)	-0.302** (0.117)
SIC4 FE	(0.005) Yes	(0.040) Yes	Yes	(0.054) Yes	(0.117) Yes
Year FE	Yes	Yes	Yes	Yes	Yes
Observations	2,320	2,320	2,320	2,320	2,320
KP F-statistic	170.9	170.9	170.9	170.9	170.9

Bown, Conconi, Erbahar, and Trimarchi Trade Protection Along Supply Chains

Data

Conclusion

Mechanism: the effects of tariffs on imports and prices

AD duties decrease imports of targeted products and increase prices

The impact of tariffs on imports and prices

	Ir	nports	Price	s
	China	Top 50 exporters	Domestic goods	All inputs
	(1)	(2)	(3)	(4)
$\Delta Tariff_{i,T}$	-0.134***	0.024	0.056***	
	(0.048)	(0.026)	(0.015)	
$\Delta Tariff_{i,T} \times China_c$		-0.213***		
		(0.079)		
∆Input Tariff _{i T}		. ,		0.059***
5.7				(0.019)
SIC4 FE	Yes	No	Yes	Yes
Term FE	Yes	No	Yes	Yes
SIC4 \times Country FE	No	Yes	No	No
Term \times Country FE	No	Yes	No	No
Observations	2,687	100,696	2,058	2,320
KP F-statistic	16.2	8.11	16.6	170.9

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion ●○○	Appendix 000000000000000000000000000000000000
Conclus	sion				

- We develop a **new instrument** for AD protection, which exploits exogenous variation in the political importance of industries and in their historical experience in AD proceedings
- Using this instrument, we find that higher tariffs decrease imports and increase prices of targeted products, and reduce employment, sales, investment and wages in downstream industries
- Our baseline estimates indicate that 1.8 million jobs were lost in 1988-2016 due to AD protection (4.8% of job gains in that period)
- Our results resonate with concerns heard in the media about the costs of protection along supply chains: "Trump's tariffs on steel will cost manufacturing jobs across the country" (Financial Times, March 1, 2018)

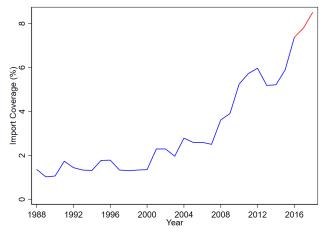
 Introduction
 Data
 Identification Strategy
 Empirical Results
 Conclusion

 00000
 000000000000
 00000000000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Debate about the use of AD in multilateral trading system

- Previous studies provide an economic rationale for allowing AD measures in trade agreements: the ability to protect industries in the face of import surges can act as a "safety valve," allowing countries to sustain trade policy cooperation (Bagwell and Staiger, 1990; Bown and Crowley, 2013)
- Our paper emphasizes the **political economy motives** for flexible trade barriers (in the spirit of Bagwell and Staiger, 2005); these motives are particularly important in the United States, where swing-state politics creates incentives to favor key industries in battleground states
- This can help to explain strong criticism of the WTO Appellate Body by the United States and its refusal to appoint new members:

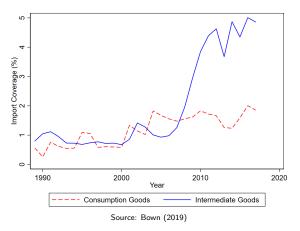
AD protection in United States is "very sensitive here in a way that they may not be in other countries. The Appellate Body obviously hasn't been sensitive to any of that, and they've simply trampled those laws every chance they've gotten" (Stephen Vaughn, former USTR General Counsel)


Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion ○○●	Appendix 000000000000000000000000000000000000

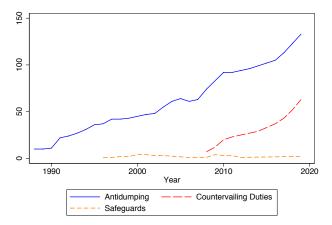
Thank you!

Bown, Conconi, Erbahar, and Trimarchi Trade Protection Along Supply Chains

Share of US imports from China covered by AD duties



Source: Bown (forthcoming).


Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix oooooooooooooooooooooooooooooooooooo

Share of US imports from China covered by temporary trade barriers

US AD duties, countervailing duties, and safeguards against China

Source: Authors' calculations based on the Temporary Trade Barriers Database.

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
					000000000000000000000000000000000000000

Top-10 protected sectors, by average duty

SIC4	SIC4 description	Average tariff
0710	Agriculture	245.5%
2033	Canned fruits and vegetables	243.5%
2037	Frozen fruits and vegetables	237.1%
2035	Pickles, sauces, and salad dressings	234.9%
3792	Travel trailers and campers	172.0%
3399	Primary metal products, n.e.c.	134.6%
3339	Primary nonferrous metals, n.e.c.	125.9%
2869	Industrial organic chemicals, n.e.c.	125.1%
0900	Fishing, hunting, and trapping	120.7%
3494	Valves and pipe fittings, n.e.c.	117.7%

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
					000000000000000000000000000000000000000

Descriptive statistics on tariffs applied by the US against China

Variable	Mean	Std. Dev.	Min	Max		
	(a) AD duti	es, 1988-2016				
Tariff _{i.t}	0.15	0.53	0.00	4.30		
Average Input Tariff _{i.t}	0.14	0.15	0.00	1.07		
Tariff on Key $Input_{1,j,t}$	0.36	0.63	0.00	3.77		
	(b) MFN tar	iffs, 1988-2016				
Tariff _{j,t}	0.05	0.21	0.00	3.50		
Average Input Tariff _{i.t}	0.02	0.03	0.00	0.43		
Tariff on Key Input _{1,j,t}	0.05	0.23	0.00	3.50		
	(c) AD duti	es, 2017-2018				
Tariff _{j,t}	0.36	0.81	0.00	4.93		
Average Input Tariff _{i.t}	0.34	0.21	0.02	1.01		
Tariff on Key Input _{1,j,t}	0.88	0.88	0.00	3.73		
(d) Section 201, 232, and 301 tariffs, 2018						
Tariff _{j,t}	0.11	0.07	0.00	0.25		
Average Input Tariff _{i,t}	0.05	0.03	0.00	0.15		
Tariff on Key $Input_{1,j,t}$	0.13	0.05	0.00	0.25		

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
					000000000000000000000000000000000000000

Top-10 downstream sectors, by average input duty

SIC4	SIC4 description	Average input duty	Average duty on key input	Key input SIC4	Key input description
0800	Forestry	61.78%	245.53%	0710	Agriculture
3449	Miscellaneous metal work	50.17%	81.61%	3312	Blast furnaces and steel mills
2653	Corrugated and solid fiber boxes	44.30%	76.93%	2621	Paper mills
3412	Metal barrels, drums, and pails	43.78%	81.61%	3312	Blast furnaces and steel mills
3448	Prefabricated metal buildings	43.12%	81.61%	3312	Blast furnaces and steel mills
2821	Plastics materials and resins	42.24%	125.09%	2869	Industrial organic chemicals, n.e.c.
2674	Bags: uncoated paper and multiwall	40.81%	76.93%	2621	Paper mills
3084	Plastics pipe	40.62%	53.04%	2821	Plastics materials and resins
2655	Fiber cans, drums and similar products	40.04%	76.93%	2621	Paper mills
3465	Automotive stampings	39.18%	81.61%	3312	Blast furnaces and steel mills

Bown, Conconi, Erbahar, and Trimarchi Trade Protection Along Supply Chains

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000
Politics	of AD)			

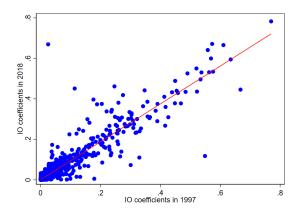
- Domestic politics can affect the two institutions that regulate AD:
 - Department of Commerce (DOC): determines if imported goods are sold at less than "fair value", sets dumping margin
 - **DOC** is part of the executive branch: the President nominates its top positions and can directly intervene in its decisions
 - International Trade Commission (ITC): determines whether imports have caused material injury to the relevant US industry
 - Decisions of **ITC** reflect interests of key committees in Congress (e.g. Moore, 1992; Hansen and Prusa, 1997; Aquilante, 2018)

Data

Empirical Results

Conclusion

Swing-state politics and ITC votes


ITC commissioners more likely to protect key industries in swing states

	Affirmative vote	Affirmative vote	Share of affirmative votes
	(1)	(2)	(3)
Swing _{i.T}	19.391***	16.280***	0.464***
	(4.372)	(4.278)	(0.109)
$Swing_{iT} \times Same Party as President_{c,T}$		7.285***	
.,.		(2.394)	
Same Party as President _{c,T}		0.054	
		(0.039)	
Commissioner FE	Yes	Yes	No
Year FE	Yes	Yes	Yes
SIC4 FE	Yes	Yes	Yes
Adjusted R ²	0.50	0.51	0.30
Observations	856	856	113

The table reports OLS estimates. In columns 1 and 2, the dependent variable is $Vote_{i,t,c}$, a dummy variable which is equal to 1 if ITC commissioner c votes in favor of AD duties against China in year t, in a case involving SIC4 industry *i*. In column 3, the dependent variable is $Vote Share_{i,t}$, the share of ITC commissioners voting in favor of AD duties against China in year t, in a case involving SIC4 industry *i*. Swing_{i,T} captures the importance of industry *i* in states classified as swing during term *T*. Same Party as the President_{t,c} is a dummy variable equal to 1 if ITC commissioner *c* belongs to the same party as the incumbent executive in year *t*. The sample covers 1985-2008. Standard errors in parentheses are clustered at the SIC3 industry level. ***, ***, and * denote significance at the 1%, 5%, and 10% levels respectively.

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000

IO coefficients

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix 000000000000000000000000000000000000

Top-10 key inputs

		Share	Average cost share
SIC4	Input industry	downstream industries	of key input
3312	Blast furnaces and steel mills	0.17	0.11
1221	Coal and petroleum	0.10	0.09
2221	Broadwoven fabric mills, manmade	0.06	0.10
2752	Commercial printing, lithographic	0.06	0.04
2621	Paper mills	0.05	0.20
3679	Electronic components, n.e.c.	0.05	0.06
2869	Industrial organic chemicals, n.e.c.	0.04	0.11
2821	Plastics materials and resins	0.03	0.12
2911	Petroleum refining	0.03	0.10
3674	Semiconductors and related devices	0.03	0.04

Bown, Conconi, Erbahar, and Trimarchi Trade Protection Along Supply Chains

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
					000000000000000000000000000000000000000

Employment shares, 1988-2011

Bown, Conconi, Erbahar, and Trimarchi Trade Protection Along Supply Chains

Indiana, Ohio, Pennsylvania: 13% of total employment, 56% of employment in steel State-level employment in construction proportional to size of employment force

∢ Go Ba<u>ck</u>

Introduction

Data

Identification Strategy

Empirical Results

Conclusion

First-stage and reduced-form results

	First-stage results					
	All se	ctors	Manufactur	ing sectors		
	Average input	Tariff on key	Average input	Tariff on key		
	tariff	input	tariff	input		
	(1)	(2)	(3)	(4)		
$\Delta IV_{i,T}$	0.001***	0.682***	0.001***	0.714***		
	(0.000)	(0.019)	(0.000)	(0.027)		
SIC4 FE	Yes	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes	Yes		
Observations	3,351	3,351	2,742	2,742		
Adjusted R ²	0.29	0.31	0.29	0.28		
		Reduced-f	orm results			
	All se	ctors	Manufacturing sectors			
	Average input	Tariff on key	Average input	Tariff on key		
	tariff	input	tariff	input		
	(5)	(6)	(7)	(8)		
$\Delta IV_{j,T}$	-0.000***	-0.029***	-0.000***	-0.014***		
	(0.000)	(0.006)	(0.000)	(0.004)		
SIC4 FE	Yes	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes	Yes		
Observations	3,351	3,351	2,742	2,742		
Adjusted R ²	0.29	0.30	0.30	0.30		

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix oooooooooooooooooooooooo

The impact of tariffs on employment in downstream industries (OLS)

	All sectors		Manufacturing	g sectors only
	Average input	Tariff on key	Average input	Tariff on key
	tariff	input	tariff	input
	(1)	(2)	(3)	(4)
$\Delta Input Tariff_{i,T}$	-0.077**	-0.001	-0.007	-0.001
	(0.034)	(0.002)	(0.015)	(0.003)
SIC4 FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Observations	3,351	3,351	2,742	2,742
Adjusted R ²	0.50	0.50	0.42	0.42

Harder to identify negative impact of AD when ignoring endogeneity of trade policy

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
					000000000000000000000000000000000000000

Top-10 affected sectors, by number of jobs lost due to input protection

SIC4	SIC4 description	Share of total US employment	Average input tariff	Employment loss due to average input tariffs
5812	Eating and drinking places	7.94%	13.4%	-213,795
1510	Construction	5.47%	10.2%	-167,094
5210	Retail trade	13.25%	3.2%	-149,527
5012	Wholesale trade	6.11%	4.1%	-88,037
8060	Hospitals	4.90%	6.1%	-64,784
7532	Auto repair	0.67%	20.2%	-44,648
8320	Social services	1.14%	6.7%	-34,557
2752	Commercial printing, lithographic	0.49%	21.9%	-30,695
7371	Computer services	1.60%	3.4%	-26,903
4210	Trucking	1.71%	4.6%	-26,547

Bown, Conconi, Erbahar, and Trimarchi Trade Protection Along Supply Chains

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix ooooooooooooooooooooooo

The impact of tariffs on employment in downstream industries (heterogeneous effects by import dependence)

	Mean	Median
	(1)	(2)
∆Input Tariff _{i,T}	-0.239***	-0.120
5.	(0.077)	(0.092)
Δ Input Tariff _{i,T} × High Import Dependence _i	-0.404*	-0.350**
5.	(0.230)	(0.151)
SIC4 FE	Yes	Yes
Term FE	Yes	Yes
Observations	3,351	3,351
KP F-statistic	91.5	55.5
F-statistic for the sum	7.98***	12.72***

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix ○○○○○○○○○○○○○○○○○

The impact of tariffs on employment in downstream industries (alternative measures of protection)

	Product	Import	All TTBs	All countries
	coverage	coverage		
	(1)	(2)	(3)	(4)
$\Delta Input Tariff_{i,T}$	-4.235***	-2.896***	-0.379***	-0.696***
2.	(1.205)	(0.565)	(0.101)	(0.213)
SIC4 FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Observations	3,351	3,351	3,351	3,351
KP F-statistic	140.4	2,669.6	230.8	65.1

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix ○○○○○○○○○○○○○○○○○

The impact of tariffs on employment in downstream industries (additional tariffs)

	AD duties	US MFN tariffs	Chinese AD duties
	(1)	(2)	(3)
∆Input Tariff _{i.T}	-0.144**	-0.305***	-0.306***
	(0.057)	(0.081)	(0.084)
$\Delta Tariff_{j,T}$	-0.032		
	(0.030)		
$\Delta Input Tariff MFN_{j,T}$		-0.353	
		(0.245)	
$\Delta Input Retaliation_{j,T}$			-0.109**
			(0.047)
$\Delta Retaliation_{j,T}$			-0.007
			(0.014)
SIC4 FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Observations	2,833	3,351	3,351
KP F-statistic	7.97	212.7	231.6

Introduction	Data 000000	Identification Strategy	Empirical Results	Conclusion	Appendix ○○○○○○○○○○○○○○○○●○

The impact of tariffs on employment in downstream industries (political importance of industries)

	Alternative		Political controls	
	$Swing_{i,T}$ (1)	(2)	(3)	(4)
$\Delta Input Tariff_{i,T}$	-0.311***	-0.359***	-0.313***	-0.368***
3.	(0.092)	(0.103)	(0.095)	(0.107)
$\Delta Input Swing_{i,T}$		0.007		0.008
5.		(0.007)		(0.006)
$\Delta Swing_{i,T}$			-0.548	-0.566
J1.			(0.461)	(0.452)
SIC4 FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Observations	3,351	3,351	3,351	3,351
KP F-statistic	192.7	143.9	194.5	148.6

Introduction	Data	Identification Strategy	Empirical Results	Conclusion	Appendix
					0000000000000000000000

The impact of tariffs on employment in downstream industries (alternative methodologies)

	Level regressions (1)	Year differences (2)	Unweighted regressions (3)	SIC2 clusters (4)	Total requirements (5)
Input Tariff _{j,T}	-1.154*** (0.413)				
∆Input Tariff _{j,T}	· · ·	-1.235*** (0.341)	-0.152*** (0.046)	-0.319*** (0.104)	-0.362** (0.095)
SIC4 FE	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes
Observations	3,351	13,407	3,351	3,351	3,351
KP F-statistic	142.4	229.0	156.7	168.7	170.0