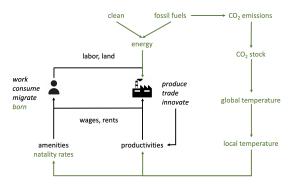
The Economic Geography of Global Warming

José-Luis Cruz (Princeton University)

Esteban Rossi-Hansberg (University of Chicago)

October 2021

An Economic Assessment Model


- Global warming is a protracted, global, phenomenon with heterogeneous local effects
- Standard climate models use loss functions relating aggregate economic outcomes to climate variables
 - ► Fail to incorporate behavioral responses, and therefore economic adaptation
 - ► Ignore the vast spatial heterogeneity in climate damages
- We propose and quantify a spatial and dynamic assessment model
 - Emphasizing the role of economic adaptation through migration, trade, and innovation

Literature Review

- Empirical Estimates of Climate Damages
 - Albouy et al. (2016), Barreca et al. (2016), Dell et al. (2012, 2014), Deschênes and Greenstone (2007, 2012), Greenstone et al. (2020), Nordhaus (2006), Schlenker and Roberts (2009)
- Economic Models of Climate Change
 - Acemoglu et al. (2012, 2016, 2019), Aghion et al. (2016), Anthoff and Tol [FUND] (2014), Benveniste et al. (2020), Costinot et al. (2016), Golosov et al. (2014), Hassler et al. (2016, 2019, 2020), Hope [PAGE] (2019), IPCC (2013), Nordhaus et al. [DICE, RICE] (1993, 1996, 2000, 2016), Stern (2012)
- Spatial Dynamic Models
 - Caliendo et al. (2019) Desmet and Rossi-Hansberg (2013, 2014), Desmet et al. (2018)
- Incipient literature in this intersection
 - Balboni (2019), Desmet and Rossi-Hansberg (2015), Desmet et al. (2018), Krusell and Smith (2018), Conte et al. (2020), Nath (2020)

Model Characteristics

- We extend the spatial growth model in Desmet et al., (2018)
 - Add natality, energy, carbon cycle, and local temperature effect on amenities and productivities

- ▶ Quantify using $1^{\circ} \times 1^{\circ}$ G-Econ data on population and income in 2000
- ► Set trade and mobility frictions to match gravity and net migration flows

Model: Preferences

• Agent's period utility:

$$u_t^i(\bar{r}_-,r) = \underbrace{\left[\int_0^1 c_t^\omega(r)^\rho d\omega\right]^{1/\rho}}_{\text{consumption}} \underbrace{b_t(r)\varepsilon_t^i(r)}_{\text{amenities}} \underbrace{\prod_{\ell=1}^t m(r_{\ell-1},r_\ell)^{-1}}_{\text{moving costs}}$$

- Local amenities are affected by:
 - \star Congestion due to population density, $b_t(r) = ar{b}_t(r) L_t(r)^{-\lambda}$
 - * Local temperature changes $\Delta T_t(r)$ through function $\Lambda^b(\cdot)$

$$ar{b}_t(r) = \Big(1 + \Lambda^b(\Delta T_t(r), T_{t-1}(r))\Big)ar{b}_{t-1}(r)$$
 fundamental amenities

ullet Migration costs are reversible: $m(r_{\ell-1},r_\ell)=m_1(r_{\ell-1})m_2(r_\ell)$ moving costs

Model: Natality

- Spatial equilibrium yields local population, $H(r)L_t(r)$
- Each agent in r at end of period t has $n_t(r)$ offsprings
 - ► Local population before migration is given by

$$\underbrace{H(r)L_{t+1}'(r)}_{\text{population at }t+1} = (1+n_t(r))\underbrace{H(r)L_t(r)}_{\text{population at }t}$$

▶ Global population L_{t+1} evolves according to

$$L_{t+1} = \int_{S} H(v) L'_{t+1}(v) dv$$

▶ Natality rates depend on real income, $y_t(r)$, and temperature, $T_t(r)$

Model: Technology

ullet Production function of variety $\omega \in [0,1]$ per land unit detail

$$q_t^\omega(r) \ = \ \underbrace{\phi_t^\omega(r)^{\gamma_1}}_{\text{innovation}} \quad \underbrace{z_t^\omega(r)}_{\text{draw}} \quad \underbrace{\left(\underbrace{L_t^\omega(r)^\chi}_{\text{labor}} \ \underbrace{e_t^\omega(r)^{1-\chi}}_{\text{energy}}\right)^\mu}_{\text{energy}}$$

- Level of productivity draws, $z_t^\omega(r)$, is given by $a_t(r)$
- Local productivities are affected by:
 - \star Agglomeration due to population density, $a_t(r) = ar{a}_t(r) L_t(r)^{lpha}$
 - * Innovation, diffusion, and temperature

$$\bar{a}_t(r) = \left(1 + \Lambda^a(\Delta T_t(r), T_{t-1}(r))\right)$$
$$\times \phi_{t-1}(r)^{\theta \gamma_1} \left[\int D(r, v) \bar{a}_{t-1}(v) dv \right]^{1-\gamma_2} \bar{a}_{t-1}(r)^{\gamma_2}$$

Model: Energy

CES energy composite between fossil fuels and clean sources

$$e^{\omega}_t(r) = \left(\kappa\underbrace{e^{f,\omega}_t(r)^{\frac{\epsilon-1}{\epsilon}}}_{\text{fossil fuels}} + (1-\kappa)\underbrace{e^{c,\omega}_t(r)^{\frac{\epsilon-1}{\epsilon}}}_{\text{clean sources}}\right)^{\frac{\epsilon}{\epsilon-1}}$$

ullet One unit of energy costs $\mathcal{Q}_t^j(r)$ units of labor

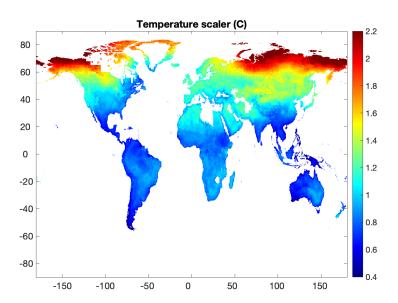
$$\mathcal{Q}_t^f(r) = \frac{f(CumCO2_t)}{\zeta_t^f(r)}, \quad \mathcal{Q}_t^c(r) = \frac{1}{\zeta_t^c(r)}$$

- ▶ $f(\cdot)$ denotes extraction cost given cumulative CO₂, $CumCO2_t$
- $ightharpoonup \zeta_t^j(r)$ is energy j's productivity, given by

$$\zeta_t^j(r) = \left(\frac{y_t^w}{y_{t-1}^w}\right)^{v^j} \zeta_{t-1}^j(r), \quad j \in \{f, c\}$$

Model: Trade

- Local diffusion of technology and competition in land prices
 - ▶ Dynamic profit maximization simplifies to static problems argument
- Trade balance region by region and iceberg trade costs
 - ► Gravity equation for bilateral trade flows details

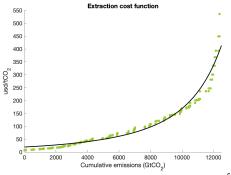

Model: Climate

- CO₂ emissions rise global temperature (IPCC, 2013) model
 - ► Endogenous evolution of CO₂ from fossil fuel combustion
 - ► Exogenous CO₂ from forestry and non-CO₂ GHG (RCP 8.5)
- ullet Linear relation from global T_t to local temperature $T_t(r)$ (Mitchell, 2003)

$$T_{t+1}(r) = T_t(r) + g(r) \cdot (T_{t+1} - T_t)$$

- $lackbox{ } g(\cdot)$ is a function of geographical attributes for each cell
 - * Chebyshev polynomial of order 10 on latitude, longitude, elevation, distance to coast, distance to ocean, distance to water, vegetation density and albedo
- ▶ Data from Berkeley Earth Surface Temperature and NASA Earth Observations

Model: Temperature Downscaling


Estimation: Summary

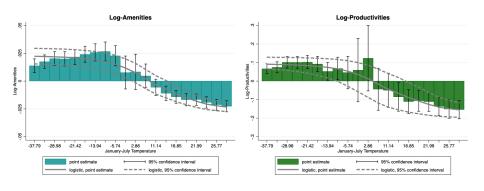
- Baseline estimation from Desmet et al. (2018) table
- Estimation of additional parameters

Q	$\mathcal{Q}_{t}^{f}(r) = f(CumCO2_{t})/\zeta_{t}^{f}(r), \mathcal{Q}_{t}^{c}(r) = 1/\zeta_{t}^{c}(r), \zeta_{t}^{j}(r) = \left(y_{t}^{w}/y_{t-1}^{w}\right)^{v^{j}}\zeta_{t-1}^{j}(r)$					
$\chi = 0.96$	Relation between global GDP, CO ₂ emissions flow and price					
$\epsilon = 1.6$	Elasticity of substitution (Popp, 2014; Papageorgiou et al., 2017)					
$\kappa = 0.89$	Relation between prices and quantities of fossil fuels and clean energy					
$f(\cdot)$	Extraction costs (Rogner, 1997; Bauer et al., 2016)					
$\zeta_0^f(\cdot), \zeta_0^c(\cdot)$	Target current cell-level energy use					
$v^f = 1.16$	Target historical global CO ₂ emissions					
$v^c = 1.22$	Target historical global clean energy use					
2. D	2. Damage functions: $\Lambda^a(\Delta T_t(r), T_t(r)), \Lambda^b(\Delta T_t(r), T_t(r)), n_t(r) = \eta(y_t(r), L_t(r))$					
$\Lambda^a(\cdot), \Lambda^b(\cdot)$	Relation between temperature and productivities and amenities					
$\eta(\cdot)$	Relation between real GDP and temperature and natalities					
3. Carbon cycle and climate						
$g(\cdot)$	IPCC (2013) and statistical down-scaling					

Estimation: Extraction Cost

1 Parametrize extraction cost $f(\cdot)$

- ★ Data from Bauer et al. (2016)
- * f(CumCO2) = $\begin{pmatrix} f_1 \\ f_2 + \exp(-f_3(CumCO2 f_4)) \end{pmatrix} \begin{pmatrix} f_5 \\ CumCO2 maxCumCO2 \end{pmatrix}^3$
- $\begin{array}{ll} \star & maxCumCO2 = & 19,500 \text{ GtCO}_2 \\ \text{are total CO}_2 & \text{reserves} \end{array}$
- $oldsymbol{2}$ Compute initial energy productivities $\zeta_0^f(r),\zeta_0^c(r)$ details map
 - Optimality condition between energy and labor
 - ▶ Require data on population, fossil fuels and clean energy
- **6** Estimate v^f, v^c plot
 - ► Target historical CO₂ emissions and clean energy

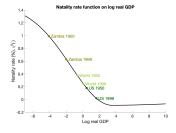

Estimation: Damage Functions

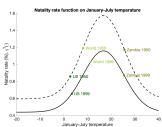
- Retrieve fundamental amenities and productivities
 - ► Consistent with observed data (1990, 1995, 2000, 2005) detail
- f 2 Estimate damage function $\Lambda^b(\cdot), \Lambda^a(\cdot)$ on fundamentals

$$\log(\bar{b}_t(r)) = \sum_{j=1}^J \delta_j^b \cdot T_t(r) \cdot \mathbb{1}\{T_t(r) \in \mathcal{T}_j\} + \iota(b_i) + \iota_t(s_\ell) + \varepsilon_t(r)$$
$$\log(\bar{a}_t(r)/\phi_t(r)) = \sum_{j=1}^J \delta_j^a \cdot T_t(r) \cdot \mathbb{1}\{T_t(r) \in \mathcal{T}_j\} + \delta^z \cdot Z(r) + \iota_t(s_\ell) + \varepsilon_t(r)$$

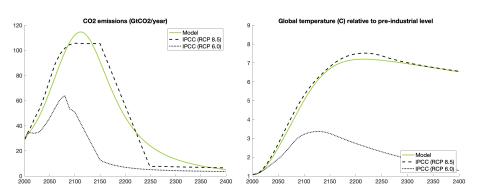
- ightharpoonup Z(r) controls for natural attributes
 - ★ Elevation, distance to water, land type
- $\blacktriangleright \ \iota(b_i)$ are block fixed effects
- $lacktriangleright \iota_t(s_\ell)$ are subnational-year fixed effects
- $ightharpoonup arepsilon_t(r)$ are spatially correlated errors

Estimation: Damage Functions

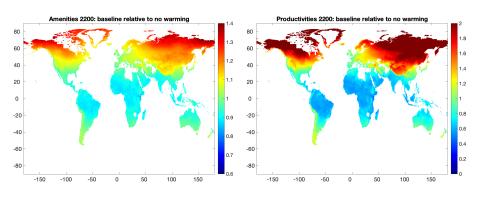



Estimation: Natality

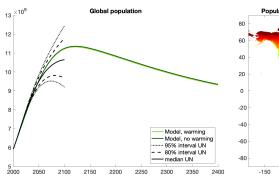
ullet Parametrize natality rate function $\eta(\cdot)$ details

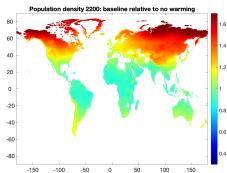

$$\eta\left(\log(y_t(r)), T_t(r)\right) = \eta^y\left(\log(y_t(r))\right) + \eta^T\left(T_t(r), \log(y_t^w)\right)$$

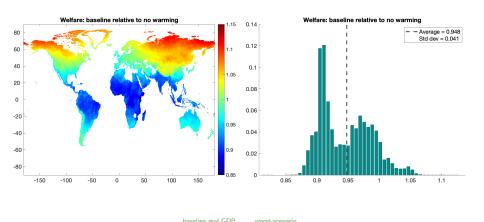
- ▶ Natality rates decline as income rises (Delventhal et al., 2019)
 - * Natality converges to zero for a stable global population
- ► Temperature minimizing mortality rates (Greenstone et al., 2018)
 - * Flatter responses as income rises (Barreca et al., 2016)
- lacktriangleright Coefficients of $\eta(\cdot)$ target historical country-level natality rates



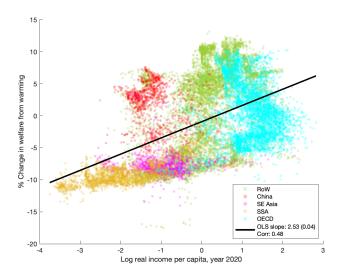
Baseline Scenario: CO2 Emissions and Global Temperature

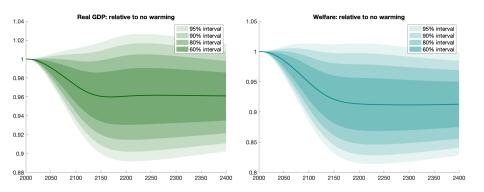

temperature

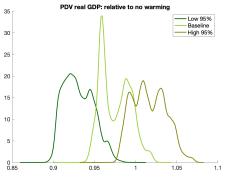

Baseline Scenario: Amenities and Productivities

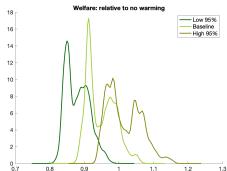

worst-scenario

Baseline Scenario: Global and Local Population

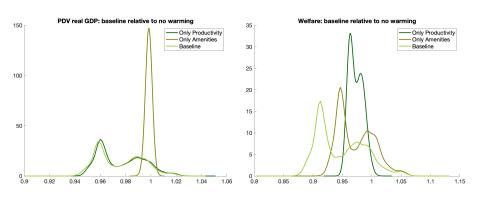



Baseline Scenario: Welfare Cost of Global Warming

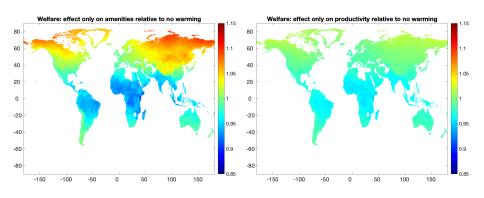

Baseline Scenario: Welfare Cost of Global Warming



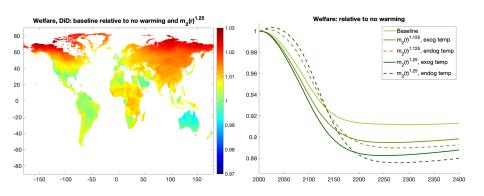
Baseline Scenario: Uncertainty about Damage Functions



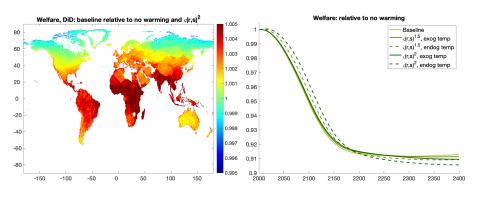
Baseline Scenario: Uncertainty about Damage Functions



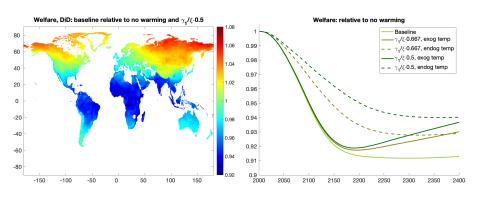
Baseline Scenario: Damage Decomposition


damage decomposition

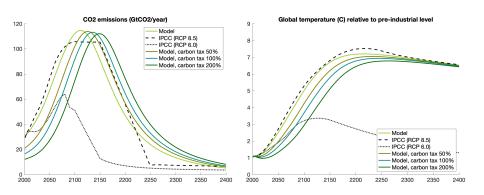
Baseline Scenario: Damage Decomposition


real GDP

Adaptation: Migration

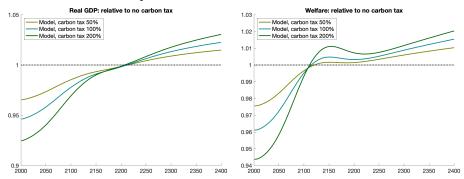

real GDP

Adaptation: Trade


real GDP

Adaptation: Innovation

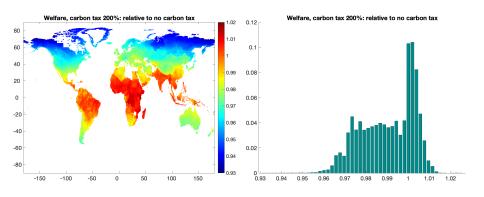
real GDP


Carbon Taxes

- ► Carbon tax of 50% equals 37 usd/tCO₂; similar to maximum in EU Emissions Trading Scheme
- ► Carbon tax of 200% equals 146 usd/tCO₂; similar to Swedish Tax

energy population kernels worst-scenario

Carbon Taxes: Dynamic Effects


• Aggregate gains depend on discount factor and BGP growth rate

DDV of worl CDD

	PDV of real GDP			VVeltare		
	BGP gr	β =0.965	β =0.969	BGP gr	β =0.965	β =0.969
τ =0%	3.046%	1	1	2.946%	1	1
$\tau{=}50\%$	3.051%	0.991	1.021	2.950%	0.996	1.010
$ au{=}100\%$	3.054%	0.987	1.033	2.953%	0.994	1.016
τ =200%	3.057%	0.981	1.047	2.955%	0.992	1.022

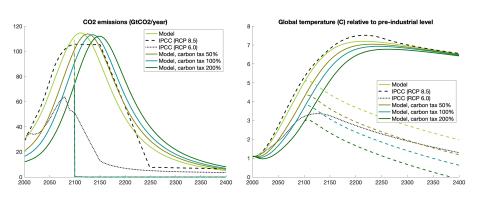
11/-15---

Carbon Taxes: Local Effects

real GDP

Abatement

- Exogenous decrease in emissions from fuel combustion
 - $ightharpoonup E_t^{f,ext}$ is carbon extracted from the ground
 - $lackbox{ } E_t^{f,atm}$ is carbon emitted to the atmosphere and $u_t(r)$ is abatement rate


$$E_t^{f,ext} = \int_S \int_0^1 e_t^{\omega,f}(r) d\omega dr$$

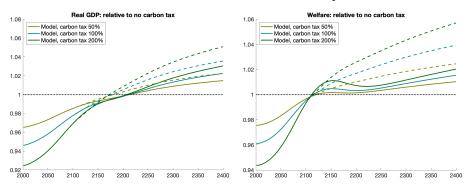
$$E_t^{f,atm} = \int_S \int_0^1 (1 - \nu_t(r)) \times e_t^{\omega,f}(r) d\omega dr$$

• Abatement cost as a fraction of household's income (Nordhaus, 2015)

$$(1 - \varpi_1 \nu_t(r)^{\varpi_2}) \times y_t(r) L_t(r) H(r)$$

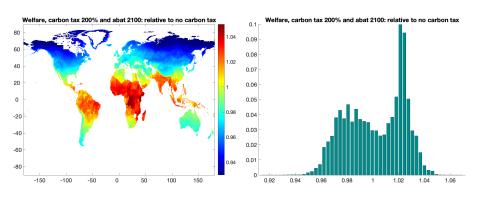
- ▶ Costless abatement: $\varpi_1 = 0$.
- Consider abatements of 100% starting in 2100 and 2200.

Abatement in 2100 and Carbon Taxes

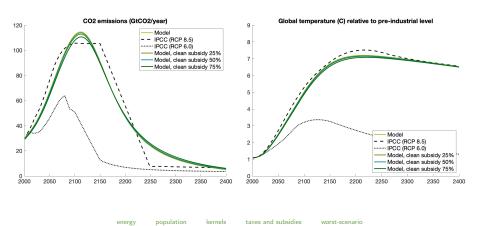


worst-scenario

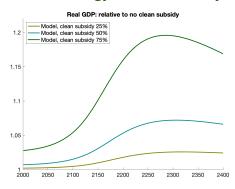
relative to no abatement

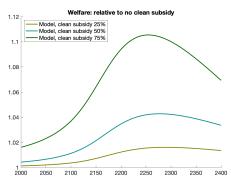

abatement 2200

Abatement in 2100 and Carbon Taxes: Dynamic Effects

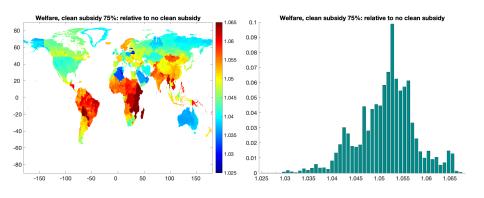

	PDV of real GDP			VVelfare		
	BGP gr	β =0.965	β =0.969	BGP gr	β =0.965	β =0.969
τ =0%	3.055%	1	1	2.967%	1	1
τ =50%	3.061%	0.994	1.033	2.975%	1.002	1.027
$\tau{=}100\%$	3.065%	0.991	1.054	2.980%	1.003	1.045
τ =200%	3.069%	0.988	1.080	2.985%	1.004	1.067

Abatement in 2100 and Carbon Taxes: Local Effects




real GDP

Clean Energy Subsidies


Clean Energy Subsidies: Dynamic Effects

	PI	OV of real C	SDP	Welfare			
	BGP gr	β =0.965	β =0.969	BGP gr	β =0.965	β =0.969	
s=0%	3.046%	1	1	2.946%	1	1	
s=25%	3.043%	1.011	1.008	2.942%	1.007	1.004	
s = 50%	3.036%	1.032	1.020	2.935%	1.020	1.009	
s=75%	3.015%	1.095	1.040	2.911%	1.052	1.011	

Clean Energy Subsidies: Local Effects

real GDP

Conclusions

- We develop an economic spatial growth model of global warming
 - ► Accounts for adaptation through trade, migration, innovation
- Estimate impact of temperature on fundamentals
 - ► Heterogeneous spatial effect of temperature for amenities and productivities
- Large heterogeneity in climate damages over space
 - ► From welfare losses of 19% to gains of 12%
 - ▶ On average, welfare losses of 5%
 - ► Large role of adaptation, particularly migration
- Carbon taxes create trade-off between present and future benefit
 - ► Large disagreement across regions

Thank You

Model: Migration

- ullet $arepsilon_t^i(r)$ is location preference shock, $\mathsf{iid}(i,t,r)$ Fréchet
- $m(r_{\ell-1},r_{\ell})$ is moving cost from $r_{\ell-1}$ to r_{ℓ}
 - Assume $m(r_{\ell-1},r_{\ell})=m_1(r_{\ell-1})m_2(r_{\ell})$ and m(r,r)=1
- Location decision in t = 1 only depends on current variables

$$\frac{V(r_0, \varepsilon_1^i)}{m_2(r_0)} = \max_{r_1} \left[\frac{b_1(r_1)y_1(r_1)\varepsilon_1^i(r)}{m_2(r_1)} + \beta \frac{V(r_1, \varepsilon_2^i)}{m_2(r_1)} \right]
= \max_{r_1} \frac{b_1(r_1)y_1(r_1)\varepsilon_1^i(r_1)}{m_2(r_1)}
+ \beta \mathbb{E} \left[\max_{r_2} \frac{b_2(r_2)y_2(r_2)\varepsilon_2^i(r_2)}{m_2(r_2)} + \frac{V(r_2, \varepsilon_3^i)}{m_2(r_2)} \right]$$

Model: Technology

- Endogenous dynamic process for local productivities
 - $\phi_t^\omega(r)$ is innovation requiring $\nu\phi_t^\omega(r)^\xi$ labor units
 - $ightharpoonup z_t^{\omega}(r)$ is idiosyncratic productivity
 - \star $\operatorname{iid}(\omega,t)$ Fréchet with shape θ and scale $a_t(r)^{1/\theta}$

$$a_t(r) = \bar{a}_t(r)L_t(r)^{\alpha}$$

$$\bar{a}_t(r) = \left(1 + \Lambda^a(\Delta T_t(r), T_{t-1}(r))\right)$$

$$\times \phi_{t-1}(r)^{\theta\gamma_1} \left[\int D(r, v)\bar{a}_{t-1}(v)dv\right]^{1-\gamma_2} \bar{a}_{t-1}(r)^{\gamma_2}$$

Model: Local Competition

- Dynamic problem reduces to sequence static problems back
 - Productivity draws are spatially correlated
 - * Perfectly correlated as distance tends to zero, and independent for large enough distances
 - ▶ In a small interval, continuum of firms that behave similarly
 - Spatial correlation of productivities and continuity of amenities and transport costs
 - Firms compete in prices for land and profits are linear in land
 - * When interval size goes to zero, perfect competition for land
 - Firms innovate to raise land bid and bid up to zero profits
 - ► Firms take land bids by others as given
 - ★ Equilibrium land bid is also taken as given
 - * Labor, CO2, clean energy and innovations are identical across varieties

Model: Trade

• Trade balance location by location back

$$w_t(r)L_t(r)H(r) = \int_S \pi_t(s,r)w_t(s)L_t(s)H(s)ds$$
$$\pi_t(s,r) = \frac{a_t(r)[mc_t(r)\varsigma(r,s)]^{-\theta}}{\int_S a_t(v)[mc_t(v)\varsigma(v,s)]^{-\theta}dv}$$

- ▶ Technology draws $z_t^{\omega}(r)$ are $iid(\omega, t)$ Fréchet
 - * With shape θ and scale $a_t(r)^{1/\theta}$
- \blacktriangleright $\pi_t(s,r)$ is share of goods produced in r that are bought in s
- $ightharpoonup mc_t(r)$ is marginal cost in r
- $ightharpoonup \zeta(s,r)$ is iceberg cost of transporting a goods from r to s

Model: Carbon Cycle

Reduced-form evolution of atmospheric CO₂

$$\begin{split} S_{t+1} &= S_{\text{pre-ind}} + \sum_{\ell=1}^{\infty} (1 - \delta_{\ell}) \left(E_{t+1-\ell}^f + E_{t+1-\ell}^x \right) \\ (1 - \delta_{\ell}) &= a_0 + \sum_{i=1}^{3} (a_i e^{-\ell/b_i}) \end{split}$$

- $S_{\text{pre-ind}} = 2,200 \text{ GtCO}_2$ is carbon stock in the preindustrial era
- $E_t^f = \int_S \int_0^1 e_t^{f,\omega}(v) H(v) d\omega dv$ are endogenous CO_2 from fuel combustion
- E_t^x are exogenous CO₂ emissions from forestry (RCP 8.5)
- $(1-\delta_\ell)$ is share of CO $_2$ emissions remaining in atmosphere ℓ periods ahead
 - * $a_0 = 0.2173, a_1 = 0.2240, a_2 = 0.2824, a_3 = 0.2763,$ $b_1 = 394.4, b_2 = 36.54, b_3 = 4.304$ (IPCC, 2013)

Model: Forcing and Temperature

ullet Mapping to radiative forcing F_{t+1}

$$F_{t+1} = \varphi \log(S_{t+1}/S_{\text{pre-ind}}) + F_{t+1}^x$$

- $\varphi = 5.35$ is the forcing sensitivity (IPCC, 2013)
- F_{t+1}^x is radiative forcing from non-CO₂ GHG (RCP 8.5)
- ullet Reduced-form evolution of global temperature T_{t+1} back

$$T_{t+1} = T_{\text{pre-ind}} + \sum_{\ell=0}^{\infty} \varrho_{\ell} F_{t+1-\ell}, \quad \varrho_{\ell} = \sum_{j=1}^2 \frac{c_j}{d_j} e^{-\ell/d_j}$$

- $ightharpoonup T_{\text{pre-ind}} = 8.1^{\circ}\text{C}$ is global temperature in preindustrial era
- lacktriangleright ϱ_ℓ is temperature response to an increase in radiative force ℓ periods ahead

*
$$c_1 = 0.631, c_2 = 0.429, d_1 = 8.4, d_2 = 4.095$$
 (IPCC, 2013)

Estimation: Summary

$\beta = 0.965$	Discount factor						
$\rho = 0.75$	Elasticity of substitution of 4 (Bernard et al., 2003)						
$\lambda = 0.32$	Relation between amenities and population						
$\Omega = 0.5$	Elasticity of migration flows to income (Monte et al., 2018)						
$\psi = 0.05$	Relation between utility and HDI (Kummu et al., 2018)						
5. Technology: $q_t^{\omega}(r) = \phi_t^{\omega}(r)^{\gamma_1} z_t^{\omega}(r) \left(L_t^{\omega}(r)^{\chi} e_t^{\omega}(r)^{1-\chi} \right)^{\mu}, F_{r,t}^{\omega}(z) = e^{a_t^{\omega}(r)z^{-\theta}}, a_t^{\omega}(r) = \bar{a}_t(r) L_t(r)^{\alpha}$							
$\alpha = 0.06$	Static elasticity of productivity to density (Carlino et al., 2007)						
$\theta = 6.5$	Trade elasticity (Eaton and Kortum, 2007; Simonovskova and Waugh, 2014)						
$\mu = 0.8$	Non-land share in production (Greenwood et al., 1997; Desmet and Rappaport, 2017)						
$\gamma_1 = 0.319$	Relation between population distribution and growth						
6. Productivity evolution: $\bar{a}_t(r) = (1 + \Lambda_t^a(r)) \left(\phi_{t-1}(r)^{\theta \gamma_1} \left[\int \bar{a}_{t-1}(v) ds \right]^{1-\gamma_2} \bar{a}_{t-1}(r)^{\gamma_2} \right), \varphi(\phi) = \nu \phi^{\xi}$							
$\gamma_2 = 0.993$	Relation between population distribution and growth						
$\xi = 125$	Desmet and Rossi-Hansberg (2015)						
$\nu = 0.15$	Initial growth rate of real GDP of 1.75%						
7. Trade costs							
$\varsigma(\cdot,\cdot)$	Allen and Arkolakis (2014) and Fast Marching Algorithm						
8. Migration costs							
$m_2(\cdot)$	Match population distribution in 2005						

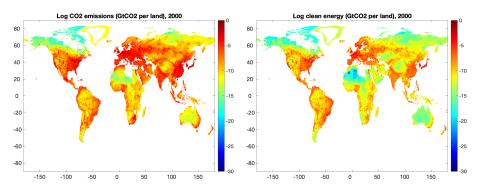
Estimation: Energy Productivities

- \bullet Compute initial energy productivities $\zeta_0^f(r),\zeta_0^c(r)$
 - ▶ First Order Conditions between labor and CO₂, and labor and clean energy

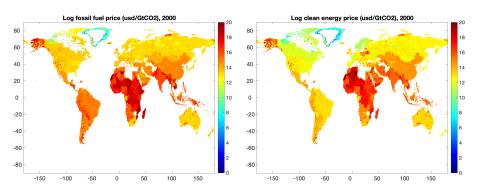
$$\zeta_0^f(r) = \left(\frac{\mu + \gamma_1/\xi}{\mu(1-\chi)\kappa}\right) \left(\frac{e_0(r)}{L_0(r)}\right) \left(\frac{e_0^f(r)}{e_0(r)}\right)^{\frac{1}{\varepsilon}} f(CumCO2_0)$$

$$\zeta_0^c(r) = \left(\frac{\mu + \gamma_1/\xi}{\mu(1-\chi)(1-\kappa)}\right) \left(\frac{e_0(r)}{L_0(r)}\right) \left(\frac{e_0^c(r)}{e_0(r)}\right)^{\frac{1}{\varepsilon}}$$

- Construct CO₂ emissions and clean energy at cell level
 - ★ Country disaggregation (EDGAR, BP)
 - * Allocate marine and aviation emissions across countries (IEA)
 - ★ Disaggregate within country across cells (EDGAR)

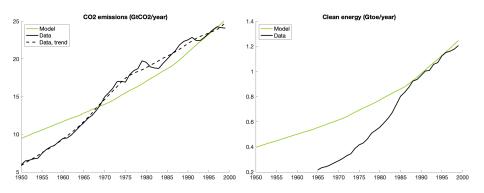

Estimation: Energy

- ullet Set elasticity between fossil fuels and clean energy $\epsilon=1.6$ $^{ ext{back}}$
 - ► Papageorgiou et al. (2013), Popp (2004)
- Calibrate fossil fuel share, $\kappa = 0.89$, and energy share, $\mu(1 \chi) = 0.03$
 - ▶ First Order Conditions between CO₂ and clean energy, and energy and labor


$$\frac{\kappa}{1-\kappa} = \left(\frac{\mathcal{Q}_0^f}{\mathcal{Q}_0^c}\right) \left(\frac{E_0^f}{E_0^c}\right)^{\frac{1}{\epsilon}}, \quad \frac{\mu(1-\chi)}{\mu + \gamma_1/\chi} = \frac{\mathcal{Q}_0 E_0}{L_0}$$

- ▶ Fossil fuel price $Q_0^f = 72.99 \text{ usd/tCO}_2$
 - * CES composite between oil, nat gas, coal (Golosov et al., 2014)
 - ★ Elasticity of substitution across fossil fuels 1.11 (Stern, 2012)
- ▶ Clean energy price $Q_0^c = 87.79 \text{ usd/toe}$
 - * Levelized Cost of Energy in electricity (Acemoglu et al., 2019)
 - * Lifetime cost in terms of lifetime electricity generation

Estimation: Energy



Estimation: Energy

back

Estimation: Past CO₂ Emissions and Clean Energy

Estimation: Initial Utility

- Use Human Development Index (HDI) as utility measure
 - ▶ Geometric mean of health, education and income
 - ► Transform HDI into a measure linear in income

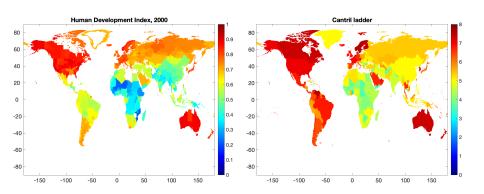
$$(HDI_t(r))^3 = \iota_t(r) + \psi_t(r)\log(GNI_t(r))$$

Definition of utility by the model

$$\psi \log(u_t^i(r)) = \psi \log(b_t(r)) + \psi \log(y_t(r))$$

► Relationship between model-based utility and HDI

$$u_t^i(r) = \exp\left(\frac{(HDI_t(r))^3}{\psi}\right)$$


Estimation: Initial Utility

	(1)	(2)	(3)	(4)	(5)	(6)
logrealgdp	0.107***	0.0450***		0.0974***	0.0447***	
	(0.00391)	(0.00442)		(0.00783)	(0.00478)	
1990 imeslogrealgdp			0.0338***			0.0360***
			(0.00400)			(0.00551)
1995×logrealgdp			0.0412***			0.0407***
1333 X logiculgup			(0.00379)			(0.00507)
			(0.00373)			(0.00301)
2000×logrealgdp			0.0459***			0.0424***
			(0.00381)			(0.00507)
2005×logrealgdp			0.0510***			0.0427***
2005 / Togi cuigup			(0.00396)			(0.00537)
	X	X	(0.00330) X	X	X	X
subcountry fe	^			^		
year fe		X	X		X	X
weight pop	X	X	X			
weight land size				X	X	X
N	2,952	2,952	2,952	2,952	2,952	2,952
R^2	0.9822	0.9880	0.9910	0.9863	0.9927	0.9933
RMSE	0.0297	0.0245	0.0211	0.0300	0.0219	0.0211

Standard errors in parentheses, clustered by country

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Estimation: Initial Utility

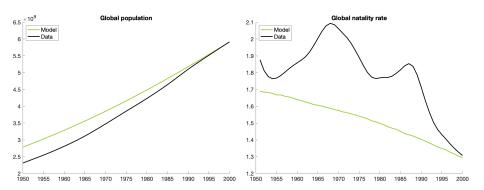
back

Estimation: Natality

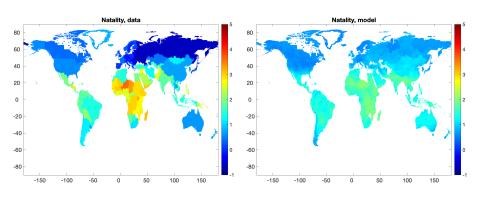
ullet Parametrize natality function $\eta(\cdot)$ back

$$\eta\left(\log(y_t(r)), T_t(r)\right) = \eta^y \left(\log(y_t(r))\right) + \eta^T \left(T_t(r), \log(y_t^w)\right)$$

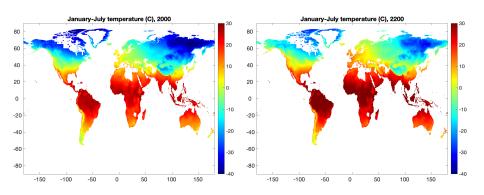
$$\eta^y \left(\log(y_t(r))\right) = \mathcal{B}\left(\log(y_t(r)); b^\ell\right) \cdot \mathbb{I}\left(\log(y_t(r)) < b^*\right)$$

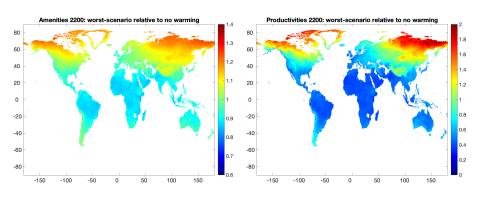

$$+ \mathcal{B}\left(\log(y_t(r)); b^h\right) \cdot \mathbb{I}\left(\log(y_t(r)) \ge b^*\right)$$

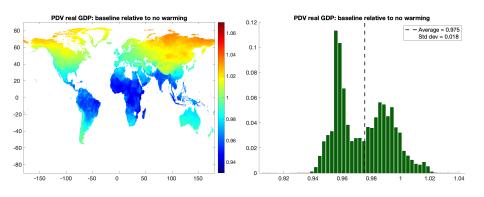
$$\eta^T \left(T_t(r), \log(y_t^w)\right) = \frac{\mathcal{B}\left(T_t(r); b^T\right)}{1 + \exp\left(b_w(\log(y_t^w) - \log(y_0(w)))\right)}$$

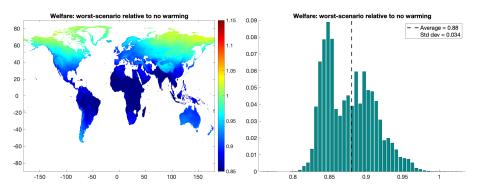

$$\mathcal{B}(x; b) = \left(b_0 + (b_2 - b_0) \exp(-b_1(x - b^*)^2)\right)$$

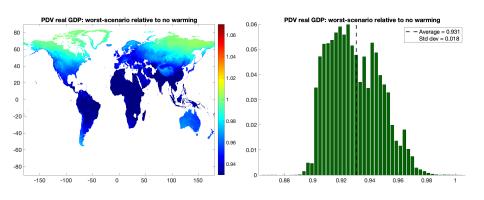
lacktriangle Estimate (b^ℓ, b^h, b^T, b^w) by targeting historical country-level natality rates

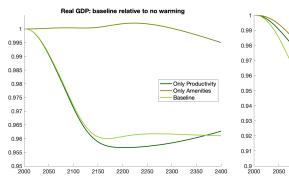

Estimation: Natality

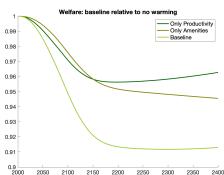

Estimation: Natality


Estimation: Temperature

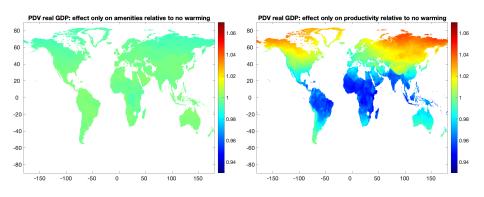

Worst-Scenario: Amenities and Productivities

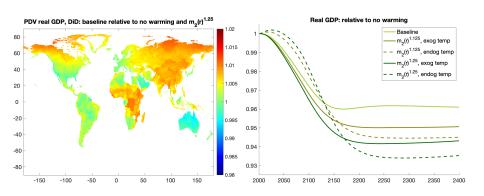

Baseline Scenario: Real GDP Cost of Global Warming


Worst-Scenario: Welfare Cost of Global Warming

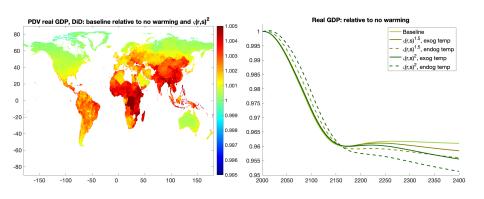


Worst-Scenario: Real GDP Cost of Global Warming

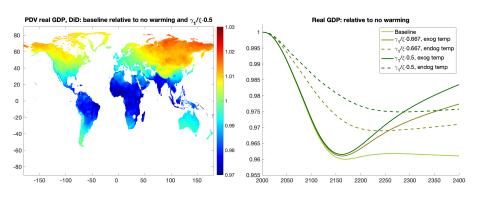

Baseline Scenario: Decomposition



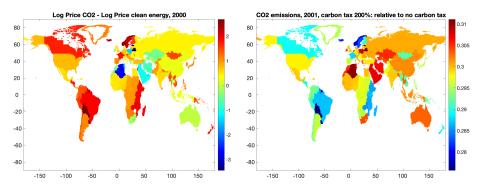
back


Baseline Scenario: Damage Decomposition

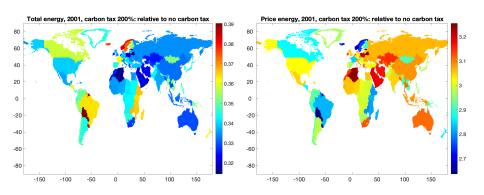
Adaptation: Migration and Real GDP

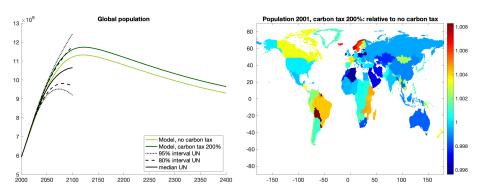


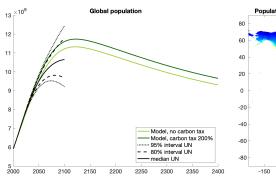
Adaptation: Trade and Real GDP

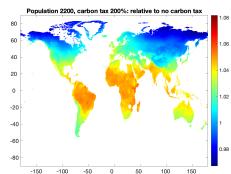


back

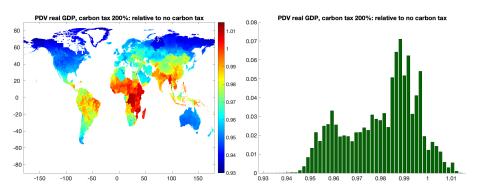

Adaptation: Innovation and Real GDP

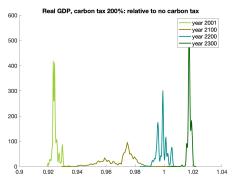

Carbon Taxes: Quantity and Price of Energy

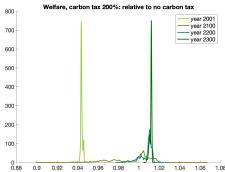

Carbon Taxes: Quantity and Price of Energy

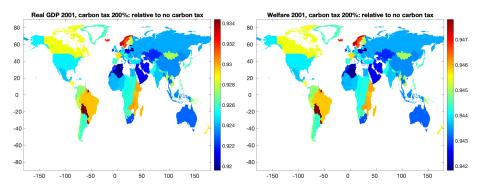


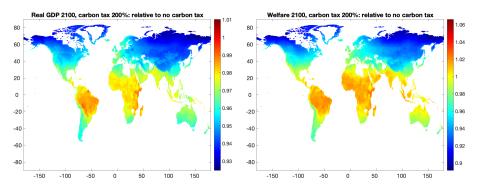
Carbon Taxes: Population

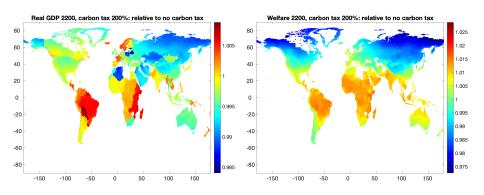

Carbon Taxes: Population

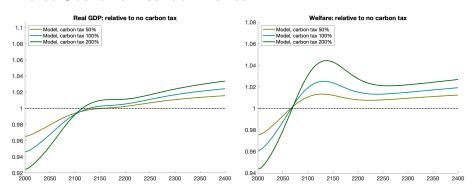


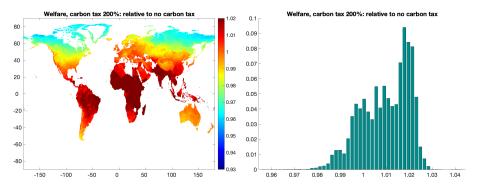



back

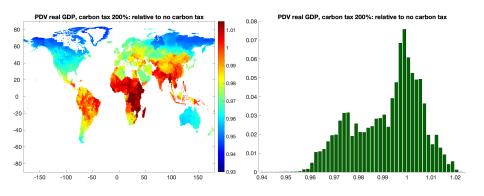

Carbon Taxes: Local Real GDP



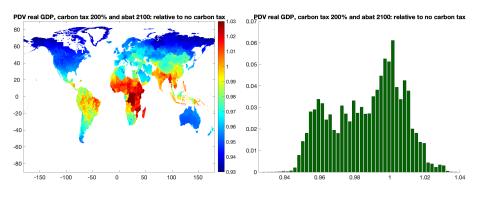


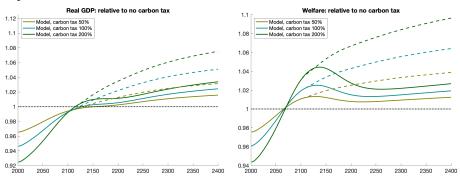

back

Worst-Scenario: Carbon Taxes



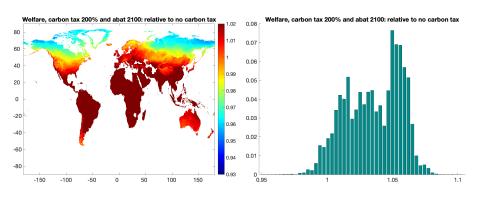
	PI	OV of real G	SDP	Welfare			
	BGP gr	β =0.965	β =0.969	BGP gr	β =0.965	β =0.969	
τ =0%	3.055%	1	1	2.958%	1	1	
τ =50%	3.059%	0.995	1.021	2.961%	1.003	1.014	
$\tau{=}100\%$	3.061%	0.994	1.033	2.963%	1.006	1.021	
τ =200%	3.064%	0.993	1.047	2.964%	1.010	1.031	


Worst-Scenario: Carbon Taxes

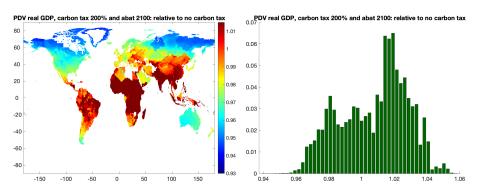

Worst-Scenario: Carbon Taxes

Abatement in 2100 and Carbon Taxes: Local Real GDP

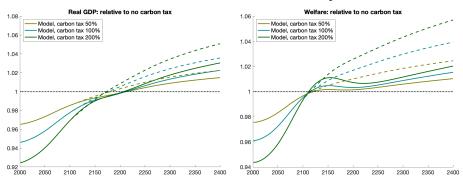
Worst-Scenario: Abatement in 2100 and Carbon Taxes, Dynamic Effects



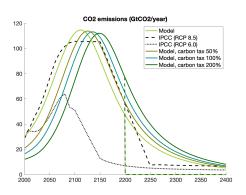
	PI	of real G	שטר	vveitare			
	BGP gr	β =0.965	β =0.969	BGP gr	β =0.965	β =0.969	
τ =0%	3.065%	1	1	2.976%	1	1	
$\tau{=}50\%$	3.071%	1.002	1.041	2.983%	1.014	1.040	
$ au{=}100\%$	3.074%	1.005	1.068	2.986%	1.024	1.066	
τ =200%	3.077%	1.009	1.103	2.991%	1.037	1.101	

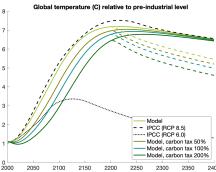

DDV of roal CDD

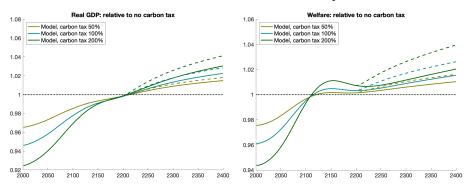
11/-15---


Worst-Scenario: Abatement in 2100 and Carbon Taxes, Local Effects

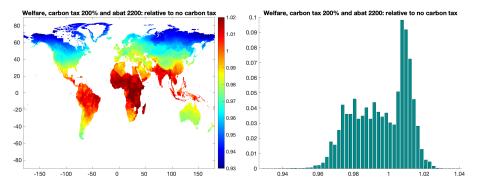
Worst-Scenario: Abatement in 2100 and Carbon Taxes, Local Effects



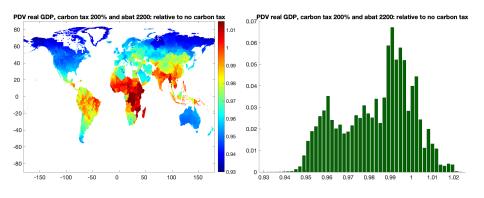

Abatement in 2100 and Carbon Taxes: Dynamic Effects


	PI	OV of real G	SDP		Welfare	
	BGP gr	β =0.965	β =0.969	BGP gr	β =0.965	β =0.969
τ =0%	3.055%	1	1	2.967%	1	1
τ =50%	3.061%	0.994	1.033	2.975%	1.002	1.027
$\tau{=}100\%$	3.065%	0.991	1.054	2.980%	1.003	1.045
τ =200%	3.069%	0.988	1.080	2.985%	1.004	1.067

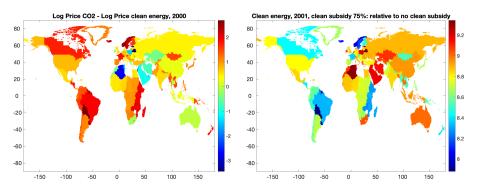
Abatement in 2200 and Carbon Taxes

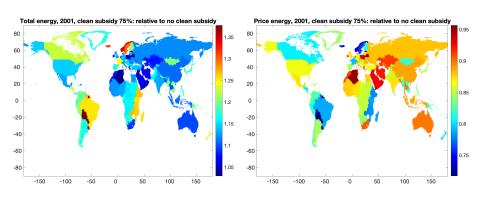


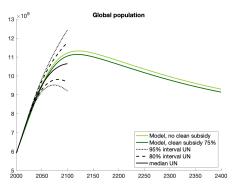
Abatement in 2200 and Carbon Taxes: Dynamic Effects

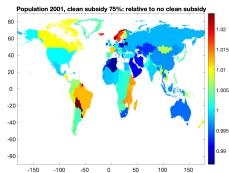


	PL	JV of real (3DP	VVelfare		
	BGP gr	β =0.965	β =0.969	BGP gr	β =0.965	β =0.969
τ =0%	3.046%	1	1	2.946%	1	1
τ =50%	3.051%	0.992	1.026	2.950%	0.998	1.017
$\tau{=}100\%$	3.054%	0.988	1.043	2.953%	0.997	1.027
τ =200%	3.057%	0.984	1.065	2.955%	0.997	1.042

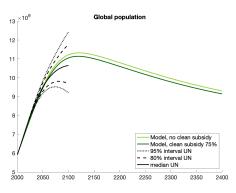

Abatement in 2200 and Carbon Taxes: Local Effects

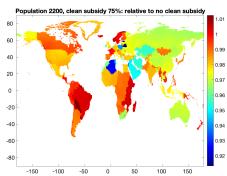

Abatement in 2200 and Carbon Taxes: Local Effects

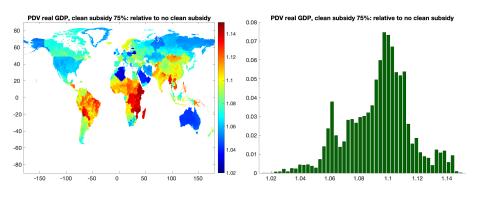

Clean Energy Subsidies: Quantity and Price of Energy

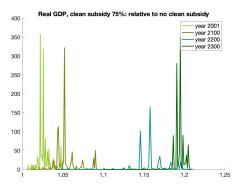


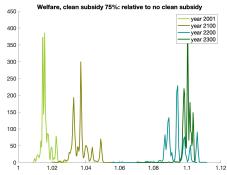
Clean Energy Subsidies: Quantity and Price of Energy

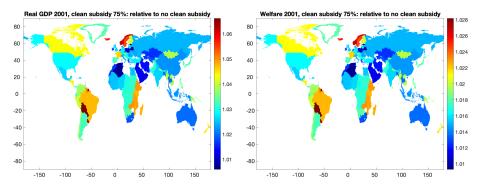


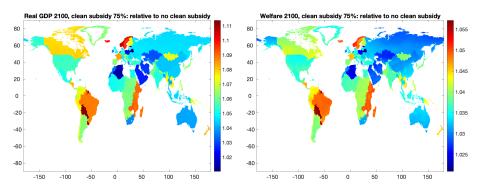

Clean Energy Subsidies: Population

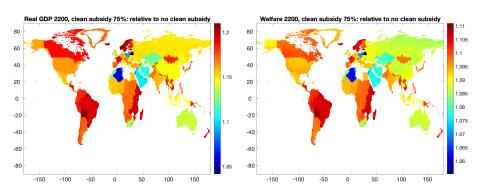

Clean Energy Subsidies: Population

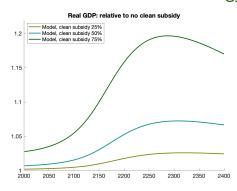


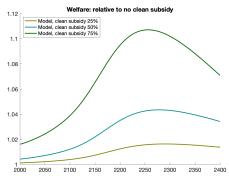



back


Clean Energy Subsidies: Local Real GDP

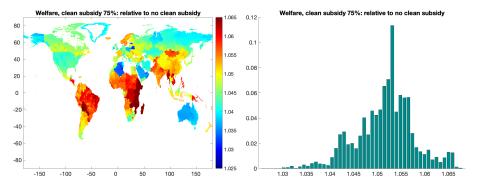


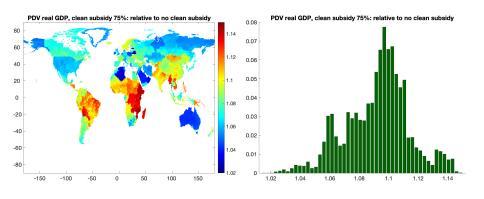

Carbon Taxes and Clean Energy Subsidies


	PDV of real GDP, $\beta=0.965$				PDV of real GDP, $\beta=0.969$			
	s=0%	s=25%	s=50%	s=75%	s=0%	s=25%	s=50%	s=75%
τ =0%	1	1.011	1.032	1.095	1	1.008	1.020	1.040
τ =50%	0.991	1.003	1.024	1.087	1.021	1.028	1.038	1.052
$ au{=}100\%$	0.987	0.998	1.020	1.083	1.033	1.040	1.047	1.058
τ =200%	0.981	0.993	1.015	1.079	1.047	1.052	1.058	1.063

	Welfare, $\beta=0.965$					Welfare, $\beta = 0.969$			
	s=0%	s=25%	s=50%	s=75%	s=0%	s=25%	s=50%	s=75%	
τ =0%	1	1.007	1.020	1.052	1	1.004	1.009	1.011	
τ =50%	0.996	1.004	1.017	1.049	1.010	1.014	1.018	1.017	
$\tau{=}100\%$	0.994	1.002	1.015	1.048	1.016	1.020	1.023	1.020	
τ =200%	0.992	0.999	1.012	1.046	1.022	1.025	1.027	1.022	

back


Worst-Scenario: Clean Energy Subsidies



	PI	OV of real C	SDP	Welfare			
	BGP gr	β =0.965	β =0.969	BGP gr	β =0.965	β =0.969	
s=0%	3.055%	1	1	2.958%	1	1	
s=25%	3.052%	1.011	1.007	2.954%	1.007	1.004	
s = 50%	3.046%	1.032	1.017	2.946%	1.020	1.008	
s=75%	3.024%	1.094	1.032	2.922%	1.052	1.008	

Worst-Scenario: Clean Energy Subsidies

Worst-Scenario: Clean Energy Subsidies

