International Friends and Enemies

Benny Kleinman Princeton University Ernest Liu Princeton University Stephen J. Redding Princeton University, NBER and CEPR

Motivation

- Rapid economic growth in China and other emerging countries has seen a dramatic change in relative economic size of nations
 - Classic question in international trade is the effect of such economic growth on income and welfare in trade partners
 - Related question in political economy is whether such changes in relative economic size heighten political tension (*Thucydides Trap*)

Motivation

- Rapid economic growth in China and other emerging countries has seen a dramatic change in relative economic size of nations
 - Classic question in international trade is the effect of such economic growth on income and welfare in trade partners
 - Related question in political economy is whether such changes in relative economic size heighten political tension (*Thucydides Trap*)
- We provide new theory and evidence on both of these questions
 - Develop bilateral "friends" and "enemies" measures of countries' income and welfare exposure to foreign productivity shocks
 - Can be computed using only observed trade data
 - Exact for small productivity shocks in the class of international trade models characterized by a constant trade elasticity
 - For large shocks, we characterize the quality of the approximation in terms of observed trade matrices, and show in practice almost exact
 - Computationally fast (> 1 million comparative statics in seconds)
 - Reveal economic mechanisms underlying quantitative results
 - Easy to examine sensitivity of quantitative results across alternative models (e.g. many sectors, input-output linkages, economic geography)

This Paper

- First-order effect of a productivity shock in a given country on welfare in each country depends on three matrices of observed trade shares
 - Expenditure shares (S): expenditure share importer on exporter
 - Income share (*T*): share exporter value added from each importer
 - Cross-substitution matrix (*M*): how \uparrow competitiveness of one country \rightarrow consumers substitute away all other countries in each market

This Paper

- First-order effect of a productivity shock in a given country on welfare in each country depends on three matrices of observed trade shares
 - Expenditure shares (S): expenditure share importer on exporter
 - Income share (*T*): share exporter value added from each importer
 - Cross-substitution matrix (*M*): how \uparrow competitiveness of one country \rightarrow consumers substitute away all other countries in each market
- Use this matrix representation to reveal economic mechanisms
 - Income exposure: market-size and cross-substitution effect
 - Welfare exposure: income exposure and cost-of-living effect
 - Partial and general equilibrium effects
 - Evaluate contribution of individual sectors
 - Evaluate contribution of importer, exporter and third markets

This Paper

- First-order effect of a productivity shock in a given country on welfare in each country depends on three matrices of observed trade shares
 - Expenditure shares (S): expenditure share importer on exporter
 - Income share (*T*): share exporter value added from each importer
 - Cross-substitution matrix (*M*): how \uparrow competitiveness of one country \rightarrow consumers substitute away all other countries in each market
- Use this matrix representation to reveal economic mechanisms
 - Income exposure: market-size and cross-substitution effect
 - Welfare exposure: income exposure and cost-of-living effect
 - Partial and general equilibrium effects
 - Evaluate contribution of individual sectors
 - Evaluate contribution of importer, exporter and third markets
- Empirical application using NBER world trade data from 1970-2012
 - Impact of productivity shocks on global income and welfare
 - Almost exact approximation to exact-hat algebra for magnitude of productivity shocks implied by the observed data ($R^2 > 0.999$)
 - As countries become greater economic friends, they also become greater political friends, as measured by UN voting and strategic rivalries

Related Literature

· Theoretical work on the incidence of trade and productivity shocks

- Hicks (1953), Johnson (1955), Bhagwati (1958)

Quantitative trade models

 Eaton and Kortum (2002), Costinot, Donaldson & Komunjer (2012), Caliendo & Parro (2015), Hsieh & Ossa (2016), Caliendo, Parro, Rossi-Hansberg & Sarte (2018), Monte, Redding & Rossi-Hansberg (2018), Dvorkin, Caliendo & Parro (2019)

• Research on sufficient statistics for welfare in international trade

 Arkolakis, Costinot & Rodriguez-Clare (2012), Adão, Costinot & Donaldson (2017), Adão, Arkolakis and Esposito (2019), Baqaee & Farhi (2019), Galle, Rodriguez-Clare & Yi (2019), Huo, Levchenko & Pandalai-Nayar (2019), Barthelme, Lan & Levchenko (2019), Adão, Arkolakis & Ganapati (2020)

· Empirical evidence on trade and productivity shocks including China

Topolova (2010), Kovak (2013), Autor, Dorn & Hanson (2013, 2014), Hsieh & Ossa (2016), Dix-Carneiro & Kovak (2017), Amiti, Dai, Feenstra & Romalis (2019), Pierce & Schott (2019), Borusyak & Jaravel (2019), Sager & Jaravel (2019).

· Empirical research using bilateral country attitudes and UN voting

 Scott (1955), Cohen (1960), Signorio & Ritter (1999), Kuziemko & Werker (2006), Bao, Liu, Qiu & Zhu (2019), Häge (2011), Guiso, Sapienza & Zingales (2009)

Outline

- General Armington
- Constant Elasticity Armington
- Extensions
- Data
- Empirical Results
- Conclusions

General Armington

· Goods differentiated by country of origin with homothetic preferences

$$u_n = rac{w_n}{\mathcal{P}\left(\boldsymbol{p}_n
ight)}, \qquad p_{ni} \equiv rac{ au_{ni}w_i}{z_i}$$

Market clearing

$$w_i \ell_i = \sum_{n=1}^N s_{ni} w_n \ell_n, \qquad \qquad s_{ni} = \frac{e_{ni} \left(\boldsymbol{p}_n \right)}{\sum_{\ell=1}^N e_{n\ell} \left(\boldsymbol{p}_n \right)}$$

• Totally differentiate market clearing and welfare, holding constant trade costs (τ_{ni}) and endowments (ℓ_i)

$$d\ln w_{i} = \sum_{n=1}^{N} t_{in} \left(d\ln w_{n} + \left[\sum_{h=1}^{N} \left[\theta_{nih} - \sum_{k=1}^{N} s_{nk} \theta_{nkh} \right] \left[d\ln w_{h} - d\ln z_{h} \right] \right] \right)$$
$$t_{in} \equiv \frac{s_{ni} w_{n} \ell_{n}}{w_{i} \ell_{i}}, \qquad \theta_{nih} \equiv \left(\frac{\partial e_{ni} \left(\boldsymbol{p}_{n} \right)}{\partial p_{nh}} \frac{p_{nh}}{e_{ni}} \right)$$
$$d\ln u_{n} = d\ln w_{n} - \sum_{i=1}^{N} s_{ni} \left[d\ln w_{i} - d\ln z_{i} \right]$$

Outline

- General Armington
- Constant Elasticity Armington
- Extensions
- Data
- Empirical Results
- Conclusions

Constant Elasticity Armington

- Consider ACR class of models with constant trade elasticity θ

(income exposure)
$$d\ln w_i = \sum_{n=1}^{N} t_{in} \left(d\ln w_n + \theta \left(\sum_{h=1}^{N} \frac{s_{nh} \left[d\ln w_h - d\ln z_h \right]}{-\left[d\ln w_i - d\ln z_i \right]} \right) \right)$$
(welfare exposure)
$$d\ln u_n = d\ln w_n - \sum_{i=1}^{N} s_{ni} \left[d\ln w_i - d\ln z_i \right]$$

Constant Elasticity Armington

- Consider ACR class of models with constant trade elasticity θ

(income exposure)
$$d\ln w_{i} = \sum_{n=1}^{N} t_{in} \left(d\ln w_{n} + \theta \left(\sum_{h=1}^{N} \frac{s_{nh} \left[d\ln w_{h} - d\ln z_{h} \right]}{-\left[d\ln w_{i} - d\ln z_{i} \right]} \right) \right)$$
(welfare exposure)
$$d\ln u_{n} = d\ln w_{n} - \sum_{i=1}^{N} s_{ni} \left[d\ln w_{i} - d\ln z_{i} \right]$$
• Bilateral friend-enemy income and welfare exposures obtained from matrix inversion (row *i*, column *n*) **energy error eroror**

income effect market-size effect cross-substitution effect

$$\frac{d \ln u}{welfare effect} = \frac{d \ln w}{income effect} - \frac{S(d \ln w - d \ln z)}{price index effect}$$

$$T_{in} = t_{in} \equiv \frac{s_{ni}w_n\ell_n}{w_i\ell_i}, \qquad M_{in} = [TS - I]_{in} = \sum_{h=1}^{N} t_{ih}s_{hn} - 1_{n=i}, \qquad S_{ni} = s_{ni}$$

Comparison with Exact-Hat Algebra

• Compare Dekle, Eaton and Kortum (2007) exact-hat algebra to our friend-enemy (first-order) linearization for productivity shocks:

$$\ln \hat{w}_i = \left(rac{ heta}{ heta+1}
ight) \ln \hat{z}_i + rac{1}{ heta+1} \ln \left[\sum_{n=1}^N t_{in} rac{\hat{w}_n}{\sum_{\ell=1}^N s_{n\ell} \hat{w}_\ell^{- heta} \hat{z}_\ell^{ heta}}
ight]$$

$$\ln \hat{w}_i \simeq \left(\frac{\theta}{\theta+1}\right) \ln \hat{z}_i + \frac{1}{\theta+1} \sum_{n=1}^N t_{in} \left[\begin{array}{c} \ln \left(\hat{w}_n\right) \\ +\theta \sum_{\ell=1}^N s_{n\ell} \left[\ln \left(\hat{w}_\ell\right) + \ln \left(\hat{z}_\ell\right) \right] \end{array} \right]$$

- Log of a weighted mean versus a weighted mean of logs
- These expressions are equal to one another: (i) no trade $t_{nn} \rightarrow 1$, $s_{nn} \rightarrow 1$; (ii) free trade
- We characterize the quality of the approximation analytically as a function of the properties of observed trade matrices S, T, $M \bigcirc$ more

Outline

- General Armington
- Constant Elasticity Armington
- Extensions
 - Trade Imbalance more
 - Productivity and trade cost changes
 - Small departures from constant trade elasticity more
 - Multiple industries (CDK) back
 - Multiple industries and input-output linkages (CP) more
 - Economic geography (Helpman model)

 more
- Data
- Empirical Results
- Conclusions

Outline

- General Armington
- Constant Elasticity Armington
- Extensions
- Data
- Empirical Results
- Conclusions

Data

- International trade data
 - United Nations COMTRADE data
 - NBER World Trade Database 1970-2012
- Income, population and distance data
 - CEPII Gravity Database 1970-2012

Outline

- General Armington
- Constant Elasticity Armington
- Extensions
- Data
- Empirical Results
 - Quality of the approximation for large shocks
 - Global productivity shocks, income and welfare
 - Economic and political friends and enemies
- Conclusions

Quality of Approximation for Productivity Shocks

- Use exact-hat algebra to recover (up to normalization) changes in trade costs $(\hat{\tau}_{ni}^{-\theta})$ and productivity (\hat{z}_n) that exactly rationalize observed trade data \leftarrow more
- Undertake exact-hat algebra counterfactual for a change in productivity (\hat{z}_n)
- Compare the exact-hat algebra counterfactuals for bilateral income responses $(\ln \hat{w}_i)$ to the predictions of our linearization $(Wd \log z)$

Quality of Approximation for Productivity Shocks

- Use exact-hat algebra to recover (up to normalization) changes in trade costs $(\hat{\tau}_{ni}^{-\theta})$ and productivity (\hat{z}_n) that exactly rationalize observed trade data \leftarrow more
- Undertake exact-hat algebra counterfactual for a change in productivity (\hat{z}_n)
- Compare the exact-hat algebra counterfactuals for bilateral income responses $(\ln \hat{w}_i)$ to the predictions of our linearization $(Wd \log z)$

Monte Carlo Simulation

- 1,000 simulations from empirical distribution productivity shocks https://www.ukachi.example.com
- Better approximation for productivity shocks than trade cost shocks

Outline

- General Armington
- Constant Elasticity Armington
- Extensions
- Data
- Empirical Results
 - Quality of the approximation
 - Global productivity shocks, income and welfare
 - Economic and political friends and enemies
- Conclusions

Global Welfare Exposure

• Growing average economic interdependence, consistent with increasing globalization over our sample period

Global Welfare Exposure

• Growing dispersion in economic interdependence, consistent with increasing globalization over our sample period

Summary of Other Empirical Results

- Strong general equilibrium effects, such that inferring welfare exposure from partial equilibrium terms can be misleading more
- Both market-size and cross-substitution effects are substantial relative to overall income exposure more
- Cost-of-living effect large relative to income exposure, such that income exposure can be poor guide to welfare exposure **Proce**
- Economically relevant importer, exporter & third-market effects
- Strong correlation between aggregate welfare predictions of single-sector, multi-sector and input-output models
- Multi-sector and input-output models have additional disaggregated predictions for sector income exposure
 more

Chinese Productivity Growth and Importer Welfare

Strong correlation between aggregate predictions of all three models

3rd Market Effects: US Exposure to China

Industry Income Exposure

Exposure to China in South-East Asia

• Largest income effects in Electrical Sector in South-East Asia and in Extractive Sectors in commodity-intensive emerging economies

Outline

- General Armington
- Constant Elasticity Armington
- Extensions
- Data
- Empirical Results
 - Quality of the approximation
 - Global productivity shocks, income and welfare
 - Economic and political friends and enemies

 more
- Conclusions

Conclusions

• We examine the classic economic question of the impact of foreign economic growth on domestic income and welfare

Conclusions

- We examine the classic economic question of the impact of foreign economic growth on domestic income and welfare
- Develop new bilateral "friends" and "enemies" measures of countries' income and welfare exposure to foreign productivity shocks
 - Can be computed using only observed trade data
 - Exact for small productivity shocks in the class of international trade models characterized by a constant trade elasticity
 - For large shocks, we characterize the quality of the approximation in terms of observed trade matrices, and show in practice almost exact
 - Computationally fast (> 1 million comparative statics in seconds)
 - Reveal economic mechanisms of market-size, cross-substitution and cost-of-living effects underlying quantitative results
 - Quantify the role of partial and general equilibrium effects
 - Easy to examine sensitivity of quantitative results across alternative models (e.g. many sectors, input-output linkages, economic geography)

Conclusions

- We examine the classic economic question of the impact of foreign economic growth on domestic income and welfare
- Develop new bilateral "friends" and "enemies" measures of countries' income and welfare exposure to foreign productivity shocks
 - Can be computed using only observed trade data
 - Exact for small productivity shocks in the class of international trade models characterized by a constant trade elasticity
 - For large shocks, we characterize the quality of the approximation in terms of observed trade matrices, and show in practice almost exact
 - Computationally fast (> 1 million comparative statics in seconds)
 - Reveal economic mechanisms of market-size, cross-substitution and cost-of-living effects underlying quantitative results
 - Quantify the role of partial and general equilibrium effects
 - Easy to examine sensitivity of quantitative results across alternative models (e.g. many sectors, input-output linkages, economic geography)
- Empirical application using NBER world trade data from 1970-2012
 - Almost exact approximation to exact-hat algebra for magnitude of productivity shocks implied by the observed data ($R^2 > 0.999$)
 - As countries become greater economic friends, they also become greater political friends, as measured by UN voting and strategic rivalries

Thank You